

Motion

Programming
using

MotionPRO
Developer

ElectroCraft Document Number
A11229 Rev 1

User Manual

© ElectroCraft 2013

ELECTROCRAFT

Motion Programming
using

MotionPRO
User Manual

ElectroCraft Document No.

 A11229

ElectroCraft
4480 Varsity Drive

Suite G
Ann Arbor, MI 48108

Tel.: (734) 662-7771

www.electrocraft.com

© ElectroCraft 2013 I MPD User Manual

Read This First

Whilst ElectroCraft believes that the information and guidance given in this manual is correct, all parties
must rely upon their own skill and judgment when making use of it. ElectroCraft does not assume any
liability to anyone for any loss or damage caused by any error or omission in the work, whether such error
or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any form or by
any means, electrical or mechanical including photocopying, recording or by any information-retrieval
system without permission in writing from ElectroCraft.

The information in this document is subject to change without notice.

About This Manual
This book is a technical reference manual for the MotionPRO Developer software.

In order to operate any ElectroCraft drive, you need to pass through 3 steps:

� Step 1 Hardware installation

� Step 2 Drive setup using ElectroCraft PROconfig or MotionPRO Developer software for drive
commissioning

� Step 3 Motion Programming using one of the options:

� A CANOpen or EtherCAT master
� The drive built-in motion controller executing a ElectroCraft Motion Program Language

(MPL) program developed using ElectroCraft MotionPRO Developer software
� A MPL_LIB motion library for PCs (Windows or Linux)
� A MPL_LIB motion library for PLCs
� A distributed control approach which combines the above options, like for example a host

calling motion functions programmed on the drives in MPL

This manual covers Steps 2 and 3 in detail. For detailed information regarding the first step, refer to the
specific documentation of each drive.

Notational Conventions
This document uses the following conventions:

MPL – ElectroCraft Motion Program Language

Faxx – Firmware versions with A = 0, 1, 2, 3, 4 or 9; Examples: F005K, F120B,F900H

FBxx – Firmware versions with B = 5, 6, 7, 8; Examples: F500B, F600C, F800I
Programmable drive – a drive with an embedded motion controller capable to execute high-level
motion language programs
Programmable motor – a motor with an embedded programmable drive
SI units – International standard units (meter for length, seconds for time, etc.)
IU units – Internal units of the drive

© ElectroCraft 2013 II MPD User Manual

Related Documentation
Help of the PROconfig software – describes how to use PROconfig to quickly setup any

ElectroCraft drive for your application using only 2 dialogues. The output of PROconfig is a
set of setup data that can be downloaded into the drive EEPROM or saved on a PC file. At
power-on, the drive is initialized with the setup data read from its EEPROM. With PROconfig
it is also possible to retrieve the complete setup information from a drive previously
programmed. PROconfig includes a firmware programmer with allows you to update your
drive firmware to the latest revision. PROconfig is part of the ElectroCraft Motion PRO
Suite. Motion PRO Suite is available as part of a PRO Series Drive Evaluation Kit. Please
contact ElectroCraft or your local ElectroCraft sales representative for more information on
obtaining MotionPRO Suite or an evaluation kit.

CANopen Programming (Document No. A11226) – explains how to program the ElectroCraft
programmable drives using CANopen protocol. Describes the associated DS-301
communication profile and CiA-402 device profile.

CANopen over EtherCAT Programming (Document No. A11227) – explains how to program
the ElectroCraft Programmable drives with EtherCAT interface using CANopen over
EtherCAT protocol. Presents the CiA-402 associated drive profile and object dictionary.

Help of the MotionPRO Developer software – describes how to use MotionPRO Developer to
create motion programs using ElectroCraft Motion Program Language (MPL). MotionPRO
Developer platform includes PROconfig for the drive/motor setup, and a Motion Editor for
the motion Programming. The Motion Editor provides a simple way of creating motion
programs and automatically generates all the MPL instructions. With MotionPRO Developer
you can fully benefit from a key advantage of ElectroCraft drives – their capability to execute
complex motions without requiring an external motion controller, thanks to their built-in
motion controller.

PRO Series and LIB v2.0 (Document Number A11230) – explains how to program in C,
C++,C#, Visual Basic or Delphi Pascal a motion application for the ElectroCraft
Programmable drives using ElectroCraft motion control library for PCs. The MPL_lib
includes ready-to-run examples that can be executed on Windows or Linux (x86 and x64).

PRO Series and LabVIEW v2.0 (Document No. A11231) – explains how to program in
LabVIEW a motion application for the ElectroCraft Programmable drives using
MPL_LIB_Labview v2.0 motion control library for PCs. The MPL_Lib_LabVIEW includes
over 40 ready-to-run examples.

PRO Series and LIB_S7 (Document No. A11232) – explains how to program, in a PLC
Siemens series S7-300 or S7-400, a motion application for the ElectroCraft Programmable
drives using MPL_LIB_S7 motion control library. The MPL_LIB_S7 library is IEC61131-3
compatible.

PRO Series and CJ1 (Document No. A11233) – explains how to program, in a PLC Omron
series CJ1, a motion application for the ElectroCraft Programmable drives using
MPL_LIB_CJ1 motion control library. The MPL_LIB_CJ1 library is IEC61131-3 compatible.

PRO Series and X20 (Document No. A11234) – explains how to program, in a PLC B&R series
X20, a motion application for the ElectroCraft Programmable drives using MPL_LIB_X20
motion control library. The MPL_LIB_X20 library is IEC61131-3 compatible.

ElectroCAN (Document No. A11235) – presents ElectroCAN protocol – an extension of the
CANopen communication profile used for MPL commands

© ElectroCraft 2013 III MPD User Manual

If you Need Assistance …

If you want to … Contact ElectroCraft at …

Visit ElectroCraft online

World Wide Web: http://www.electrocraft.com/

Receive general information
or assistance (see Note)

Ask questions about product
operation or report suspected
problems (see Note)

Make suggestions about,
or report errors in
documentation.

World Wide Web: http://www.electrocraft.com/

Email: drivesupport@electrocraft.com

Fax: (41) 32 732 55 04

Email: : drivesupport@electrocraft.com

Mail: ElectroCraft
4480 Varsity Drive
Suite G
Ann Arbor, MI 48108

Tel.: (734) 662-7771

© ElectroCraft 2013 IV MPD User Manual

This page is empty

© ElectroCraft 2013 V MPD User Manual

Contents

Read This First ... I

1. Overview ... 1
1.1. Getting Started with MotionPRO Developer ... 1

2. Project Management .. 9
2.1. Project File Concept ... 9

2.2. Memory Setting .. 12

2.3. Application - Setup ... 14

2.4. Application - Motion .. 16

2.4.1. Homing Modes .. 19
2.4.2. Homing Modes Edit ... 21
2.4.3. Functions ... 22
2.4.4. Functions Edit .. 23
2.4.5. Interrupts ... 24
2.4.6. Interrupts Edit .. 25
2.4.7. CAM Tables ... 26
2.4.8. CAM Tables Edit ... 28

3. MotionPRO Developer Workspace ... 30
3.1. Menu Bar .. 31

3.1.1. Project Menu ... 31
3.1.2. Application Menu ... 32
3.1.3. Application | Setup Menu .. 33
3.1.4. Application | Motion Menu ... 34
3.1.5. Communication Menu ... 35
3.1.6. View Menu ... 36
3.1.7. Logger ... 36
3.1.8. Control Panel ... 38
3.1.9. Help ... 39

3.2. Toolbar ... 40

4. Evaluation Tools ... 42
4.1. Data Logger .. 42

© ElectroCraft 2013 VI MPD User Manual

4.1.1. Data Logger ... 42
4.1.2. Data Logger - Start .. 43
4.1.3. Data Logger - Plot Options .. 44
4.1.4. Data Logger - Plot Setup ... 46
4.1.5. Data Logger - Variables .. 48
4.1.6. Data Logger - Other Options ... 50

4.2. Control Panel .. 52

4.2.1. Control Panel ... 52
4.2.2. Control Panel - Show Value .. 58
4.2.3. Control Panel - Scope ... 60
4.2.4. Control Panel - Double Scope ... 62
4.2.5. Control Panel - Y(X) Scope Object .. 64
4.2.6. Control Panel - Gauge ... 66
4.2.7. Control Panel - Slider .. 68
4.2.8. Control Panel - Input ... 70
4.2.9. Control Panel - Bit Value ... 71
4.2.10. Control Panel - User Defined MPL Sequence Object .. 72
4.2.11. Control Panel - Label ... 73
4.2.12. Control Panel - Output ... 74
4.2.13. Control Panel Properties .. 75

4.3. Command Interpreter ... 75

4.4. Binary Code Viewer .. 78

4.5. Memory View .. 80

5. Communication .. 81
5.1. Communication Setup .. 81

5.1.1. RS-232 Communication Setup .. 83
5.1.2. RS-232 Communication Troubleshoots .. 85
5.1.3. CAN-bus Communication Setup ... 86
5.1.4. CAN-bus Communication Troubleshoots .. 89
5.1.5. User implemented serial driver example ... 90
5.1.6. User Implemented Serial Driver Setup .. 94
5.1.7. User Implemented Serial Driver Troubleshoots .. 97
5.1.8. Advanced Communication Setup .. 98

5.2. Communication Protocols ... 101

5.2.1. Message Structure. Axis ID and Group ID .. 103
5.2.2. Serial communication. RS-232 and RS-485 protocols .. 106
5.2.3. CAN-bus communication. ElectroCAN protocol .. 115

© ElectroCraft 2013 VII MPD User Manual

5.2.4. CAN-bus communication. MPLCAN protocol .. 128

6. Application Programming ... 134
6.1. Motion Programming – drives with built-in Motion Controller 134

6.1.1. Motion Programming Toolbars .. 138
6.1.2. Motion Trapezoidal Profile ... 143
6.1.3. Motion S-Curve Profile .. 146
6.1.4. Motion PT .. 148
6.1.5. Motion PVT .. 151
6.1.6. Motion External ... 154
6.1.7. Motion Electronic Gearing ... 157
6.1.8. Motion Electronic Camming .. 161
6.1.9. Motor Commands .. 166
6.1.10. Motion Position Triggers .. 169
6.1.11. Motion Homing ... 170
6.1.12. Motion Contouring .. 172
6.1.13. Motion Test .. 176
6.1.14. Events Dialogue ... 178
6.1.15. Jumps and Function Calls .. 192
6.1.16. I/O General I/O (Firmware FAxx) ... 194
6.1.17. I/O General I/O (Firmware FBxx) ... 197
6.1.18. Assignment & Data Transfer - Setup 16-bit variable .. 199
6.1.19. Assignment & Data Transfer - Setup 32-bit variable .. 200
6.1.20. Assignment & Data Transfer - Arithmetic Operations .. 203
6.1.21. Assignment & Data Transfer - Data Transfer Between Axes 205
6.1.22. Send data to host ... 208
6.1.23. Assignment & Data Transfer - Miscellaneous .. 210
6.1.24. MPL Interrupt Settings ... 213
6.1.25. Free text ... 218

6.2. ElectroCraft Motion Language .. 219

6.2.1. Basic Concepts ... 219
6.2.2. MPL Description .. 239
6.2.3. Electronic Gearing - MPL Programming Details .. 274
6.2.4. MPL Instruction set .. 365
6.2.5. Instructions descriptions .. 382
6.2.6. MPL Registers ... 654
6.2.7. Bit 9 SPDLP. Speed loop status .. 667

6.3. Internal Units and Scaling Factors .. 687

6.4. PRO EEPROM Programmer .. 687

© ElectroCraft 2013 VIII MPD User Manual

6.4.1. PRO EEPROM Programmer ... 687
6.4.2. PRO EEPROM Programmer File Format .. 691

Appendix A : MPL Instructions List ... 693

7. Appendix B : MPL Data List... 701

© ElectroCraft 2013 1 MPD User Manual

1. Overview

1.1. Getting Started with MotionPRO Developer

MotionPRO Developer is an integrated development environment for the setup and motion programming
of ElectroCraft Programmable drives and motors. The output of MotionPRO Developer is a set of setup
data and a motion program, which can be downloaded to the drive/motor EEPROM or saved on your PC
for later use.

MotionPRO Developer includes a set of evaluation tools like the Data Logger, the Control Panel and the
Command Interpreter which help you to quickly develop, test, measure and analyze your motion
application.

MotionPRO Developer works with projects. A project contains one or several Applications.

Each application describes a motion system for one axis. It has 2 components: the Setup data and the
Motion program and an associated axis number: an integer value between 1 and 255. An application
may be used either to describe:

1. One axis in a multiple-axis system

2. An alternate configuration (set of parameters) for the same axis.

In the first case, each application has a different axis number corresponding to the axis ID of the
drives/motors from the network. All data exchanges are done with the drive/motor having the same
address as the selected application. In the second case, all the applications have the same axis number.

The setup component contains all the information needed to configure and parameterize a ElectroCraft
drive/motor. This information is preserved in the drive/motor EEPROM in the setup table. The setup table
is copied at power-on into the RAM memory of the drive/motor and is used during runtime.

The motion component contains the motion sequences to do. These are described via a MPL
(ElectroCraft Motion Program Language) program, which is executed by the drives/motors built-in motion
controller.

© ElectroC

Step 1 Cr

MotionPR
previously

When you
applicatio

Press New
your first
default ax
the produ
brushed m
feedback

Craft 2013

reate a new p

RO Developer
y created one

u start a new
ns can be ad

w button
application e

xis ID of the d
ct chosen, th
motor, 3 phas
device (for ex

project

r starts with a
e.

project, Moti
ded later. Yo

equal with you
drives/motors
e selection m
se stepper), t
xample: incre

2

an empty win

ionPRO Deve
u can duplica

 to o
ur drive/moto
s. Press New

may continue
the control m

emental encod

2

dow from wh

eloper autom
ate an applica

open the “New
or axis ID. Th
w button and

with the moto
mode (for exa
der, SSI enco

here you can

atically create
ation or insert

w Project” dia
he initial value
select your d

or technology
ample open-lo
oder)

MPD U

create a new

es a first app
one defined

alogue. Set th
e proposed is
drive/motor ty
y (for example
oop or closed

User Manual

w project or o

plication. Add
in another pro

he axis numb
s 255 which
ype. Dependi
e: brushless m
d-loop) and ty

pen a

itional
oject.

ber for
is the
ng on
motor,
ype of

© ElectroC

Validate y
the left s
applicatio

Craft 2013

your selection
ide you can
n are named

n with a mou
see the stru
“Untitled”. Th

3

use click. Mot
ucture of a p
he application

3

tionPRO Dev
project. At be
n has 2 compo

veloper opens
eginning both
onents: S Set

MPD U

s the Project
h the new p
tup and M Mo

User Manual

window whe
project and its
otion (program

ere on
s first
m).

© ElectroCraft 2013 4 MPD User Manual

Step 2 Establish communication

If you have a drive/motor connected with your PC, now its time to check the communication. Use menu
command Communication | Setup to check/change your PC communication settings. Press the Help
button of the dialogue opened. Here you can find detailed information about how to setup your
drive/motor and the connections. Power on the drive/motor, then close the Communication | Setup
dialogue with OK. If the communication is established, MotionPRO Developer displays in the status bar
(the bottom line) the text “Online” plus the axis ID of your drive/motor and its firmware version. Otherwise
the text displayed is “Offline” and a communication error message tells you the error type. In this case,
return to the Communication | Setup dialogue, press the Help button and check troubleshoots.

Remark: When first started, MotionPRO Developer tries to communicate with your drive/motor via RS-
232 and COM1 (default communication settings). If your drive/motor is powered and connected to your
PC port COM1 via an RS-232 cable, the communication can be automatically established.

Step 3 Setup drive/motor

In the project window left side, select “S Setup”, to access the setup data for your application.

Press View/Modify button . This opens 2 setup dialogues: for Motor Setup and
for Drive setup through which you can configure and parameterize a ElectroCraft drive/motor. In the

© ElectroCraft 2013 5 MPD User Manual

Motor setup dialogue you can introduce the data of your motor and the associated sensors. Data
introduction is accompanied by a series of tests having as goal to check the connections to the drive
and/or to determine or validate a part of the motor and sensors parameters. In the Drive setup dialogue
you can configure and parameterize the drive for your application. In each dialogue you will find a
Guideline Assistant, which will guide you through the whole process of introducing and/or checking your
data.

Press the Download to Drive/Motor button to download your setup data in the
drive/motor EEPROM memory in the setup table. From now on, at each power-on, the setup data is
copied into the drive/motor RAM memory which is used during runtime. It is also possible to save the
setup data on your PC and use it in other applications. Note that you can upload the complete setup data
from a drive/motor.

To summarize, you can define or change the setup data of an application in the following ways:

• create a new setup data by going through the motor and drive dialogues

• use setup data previously saved in the PC

• upload setup data from a drive/motor EEPROM memory

Step 4 Program motion

In the project window left side, select “M Motion”, for motion programming.

© ElectroCraft 2013 6 MPD User Manual

One of the key advantages of the ElectroCraft drives/motors is their capability to execute complex
motions without requiring an external motion controller. This is possible because ElectroCraft
drives/motors include both a state of art digital drive and a powerful motion controller.

Programming motion on a ElectroCraft drive/motor means to create and download a MPL (ElectroCraft
Motion Program Language) program into the drive/motor memory. The MPL allows you to:

• Set various motion modes (profiles, PVT, PT, electronic gearing or camming, etc.)

• Change the motion modes and/or the motion parameters

• Execute homing sequences

• Control the program flow through:

o Conditional jumps and calls of MPL functions

o MPL interrupts generated on pre-defined or programmable conditions (protections triggered,
transitions on limit switch or capture inputs, etc.)

o Waits for programmed events to occur

• Handle digital I/O and analogue input signals

• Execute arithmetic and logic operations

• Perform data transfers between axes

• Control motion of an axis from another one via motion commands sent between axes

• Send commands to a group of axes (multicast). This includes the possibility to start
simultaneously motion sequences on all the axes from the group

• Synchronize all the axes from a network

© ElectroCraft 2013 7 MPD User Manual

With MPL, you can really distribute the intelligence between the master and the drives/motors in complex
multi-axis applications. Thus, instead of trying to command each step of an axis movement, you can
program the drives/motors using MPL to execute complex tasks and inform the master when these are
done. Thus for each axis the master task may be reduced at: calling MPL functions (with possibility to
abort their execution if needed) and waiting for a message, which confirms the execution. If needed, the
drives/motors may also be programmed to send periodically information messages to the master so it can
monitor a task progress.

In order to help you create a MPL program, MotionPRO Developer includes a Motion Editor. This offers
you the possibility to program all the motion sequences using high level graphical dialogues which
automatically generate the corresponding MPL instructions. With Motion Editor you can develop motion
programs using almost all the MPL instructions without needing to learn them.

The Motion Editor is automatically activated when you select “M Motion” in the project window left side.
When activated, Motion Editor adds a set of toolbar buttons in the project window just below the title.
Each button opens a programming dialogue. When a programming dialogue is closed, the associated
MPL instructions are automatically generated. Note that, the MPL instructions generated are not a simple
text included in a file, but a motion object. Therefore with Motion Editor you define your motion program
as a collection of motion objects.

The major advantage of encapsulating programming instructions in motion objects is that you can very
easily manipulate them. For example, you can:

• Save and reuse a complete motion program or parts of it in other applications

• Add, delete, move, copy, insert, enable or disable one or more motion objects

• Group several motion objects and work with bigger objects that perform more complex functions

As a starting point, push for example the leftmost Motion Editor button – Trapezoidal profiles, and set a
position or speed profile. Then press the Run button. At this point the following operations are done
automatically:

• A MPL program is created by inserting your motion objects into a predefined template

• The MPL program is compiled and downloaded to the drive/motor

• The MPL program execution is started

For learning how to send commands from your host/master, check the Application | Binary Code Viewer.
This tool helps you to quickly find how to send MPL commands using one of the communication channels
and protocols supported by the drives/motors. Using this tool, you can get the exact contents of the
messages to send as well as of those expected to be received as answers.

Step 5 Evaluate motion application performances

MotionPRO Developer includes a set of evaluation tools like the Data Logger, the Control Panel and the
Command Interpreter which help you to quickly measure and analyze your motion application.

Step 6 Create an EEPROM image file for programming in production

Once you have validated your application, you can create with the menu command Application | Create
PRO EEPROM Programmer File a software file (with extension .sw) which contains all the data to write
in the EEPROM of your drive/motor. This includes both the setup data and the motion program. The .sw
file can be programmed into a drive/motor, using the PRO EEPROM Programmer tool, which comes with
MotionPRO Developer but may also be installed separately. The PRO EEPROM Programmer was
specifically designed for repetitive fast and easy setup and programming of ElectroCraft drives/motors in
production.

© ElectroCraft 2013 8 MPD User Manual

See also:

MotionPRO Developer Workspace

© ElectroCraft 2013 9 MPD User Manual

2. Project Management

2.1. Project File Concept

MotionPRO Developer works with projects. A project contains one or several Applications.

Each application describes a motion system for one axis. It has 2 main components: the Setup data and
the Motion program and an associated axis number: an integer value between 1 and 255. Applications
for ElectroCraft Motion Controller contain also a third component Axis Selection.

An application may be used either to describe:

1. One axis in a multiple-axis system

2. An alternate configuration (set of parameters) for the same axis.

In the first case, each application has a different axis number corresponding to the axis ID of the
drives/motors from the network. All data exchanges are done with the motion controller/programmable
drive or motor having the same address as the selected application. In the second case, all the
applications have the same axis number.

The setup component contains all the information needed to configure and parameterize a ElectroCraft
drive/motor. This information is preserved in the drive/motor EEPROM in the setup table. The setup table
is copied at power-on into the RAM memory of the drive/motor and is used during runtime.

The motion component contains the motion sequences to do. These are described via a MPL
(ElectroCraft Motion Program Language) program, which is executed by the built-in motion controller.

In case of motion controller applications the Axis Selection allows multi-axes system description. The
information is used by the motion controller to configure and command the slave axes.

When you start a new project, MotionPRO Developer automatically creates a first application. Additional
applications can be added later. You can duplicate an application or insert one defined in another project.

© ElectroC

When you
view open

• A
T
ap

• A
dr

• M
m
ap

• D

o

o

o

o

o

• M

o

Craft 2013

u select an a
ns on the righ

Application ID
he applicatio
pplication ID

Axis number:
rive or motor.

Memory Setti
memory is use

pplication nee

Drive

Product I
reserved a

Firmware
on the driv

Setup ID:

E2ROM: s

RAM: show

Motor: display

Type: pres

application fro
t, summarizin

D: contains a
n ID is set in
is saved in th

: must match
.

ings: shows
ed and allows
eds

ID: displays
area of the EE

ID: shows th
ve/motor must

displays the s

shows the size

ws the size o

ys the name o

sents the mot

10

om the left sid
ng the basic d

n array of cha
n the setup c

he drive/motor

h the axis Ax

how the ass
s you to modif

the drive/m
EPROM.

e firmware re
t have the sa

setup configu

e of the drive/

f drive/motor

of the motor u

tor type: brus

0

de selection
data:

aracters you
component, t
r EEPROM w

xis ID of the

sociated mot
fy the space

otor executio

equired by the
me number a

uration

/motor E2RO

RAM memor

used

hless, brushe

tree, the App

can create to
the Drive Set

with the setup

associated m

ion controller
reserved for

on/order cod

e selected co
and a revision

OM memory.

ry.

ed, stepper: ro

MPD U

plication Ge

o quickly iden
tup dialogue
data

motion contro

r/programmab
different sect

de. ElectroCr

nfiguration. T
n letter equal o

otary or linea

User Manual

neral Inform

ntify an applic
at Drive Info

oller/programm

ble drive or
tions to match

raft writes it

The actual firm
or higher.

r

mation

cation.
o. The

mable

motor
h your

in a

mware

© ElectroCraft 2013 11 MPD User Manual

• Sensors: presents the sensors used for the load and motor position and for the motor speed
(when these sensors are present)

o Load Position: type of position sensor for the load.

o Motor Position: type of position sensor for the motor

o Motor Speed: type of speed sensor for the motor

On the selection tree, for each application selected, you can access the 2 main components: the Setup
data and the Motion program. The application tree for motion controller contains also the Axis
Selection.

Continue with:

Application – Setup

Application – Motion

See also :

MotionPRO Developer Workspace

© ElectroC

2.2.

The Mem
of your ap
to 2 types

The RAM
typically u
used to te

The EEPR
used to st

The exact

In the CA
your appl
copied int
memories
CAM Tab

If your ap
allocated

In the MP
you down
location (4

If your co
program M
MPL prog
Therefore
copy sequ
copies yo
control. T
address in

Craft 2013

Memory

ory Settings d
pplication as w
s of memories

M memory has
used for the L
emporary stor

ROM memory
tore the MPL

t amount of E

AM Tables sec
ication. The
to the RAM m
s. You can fin
les View whic

pplication do
for data acqu

PL program se
nload and ex
4000h) which

nfiguration in
MUST be dow
gram execute
e, for these c
uence which
our MPL prog
The whole pr
n the EEPRO

y Setting

dialogue allow
well as where
s: RAM and E

s an area re
Logger data a
re MPL progra

y has an area
programs an

EEPROM mem

ction, you can
cam tables a

memory. Ther
nd how much
ch shows you

esn’t use ca
uisition.

ection, you ca
xecute the MP
h is checked a

cludes an abs
wnloaded into
es the ENDIN
configurations

is executed
gram from th
ocess is tran

OM and the ru

12

ws you to cus
e the MPL pro
EEPROM.

served for PV
acquisitions a
ams.

a reserved for
d the cam tab

mory is specif

n adjust the s
are first dow
refore, the ca

h of the space
u at Buffer Fr

am tables yo

an choose wh
PL program
at power on in

solute encode
o the EEPRO
NIT comman

s, MotionPRO
immediately

he EEPROM
nsparent for
n address in

2

stomize the m
ogram is load

VT / PT buffe
nd to store th

r the setup tab
bles.

fic for each dr

space reserve
nloaded into

am tables’ sp
e reserved is
ree Space the

ou can free t

ere to downlo
in the non-vo

n the AUTOR

er with positio
M and execu

nd, the EEPR
O Developer a

as the MPL
memory into
the user, wh
the RAM.

memory space
ed and execu

er followed b
he cam tables

ble preceded

rive/motor.

ed for the cam
the EEPRO

pace is reserv
 really occup
e remaining s

the space re

oad and exec
olatile EEPR
UN mode.

on read via S
uted from the
ROM memory
automatically
program star

o the RAM m
hose only obl

MPD U

e reserved fo
uted. The me

by a customiz
s during runti

by a custom

m tables sele
M memory a

ved in both R
pied by the ca
space reserve

eserved to in

cute the MPL
OM from, sta

SSI or EnDat p
RAM. In thes
y can no lon
y adds to you
rts to run. Th

memory and t
ligation is to

User Manual

or different sec
mory settings

zable area. T
me. It may al

izable area. T

ected to be us
and at runtim

RAM and EEP
am tables fro
ed for cam tab

ncrease the s

program. Typ
arting from it

protocols, the
se cases, whe
nger be acce
ur MPL progr
he copy sequ
then it passe
set the dow

ctions
s refer

This is
lso be

This is

sed in
me are
PROM
m the
bles.

space

pically
ts first

e MPL
en the
essed.
ram a

uence,
es the
wnload

© ElectroCraft 2013 13 MPD User Manual

For test purposes, you can also download and run the MPL programs from the RAM memory. This option
speeds up the download process and may be useful if your MPL program is large and you intend to
execute a lot of tests.

See also:

Project Concept

Memory Map

© ElectroCraft 2013 14 MPD User Manual

2.3. Application - Setup

In the Setup view you can create a new configuration, load a previously saved setup, upload from
drive/motor, view or change the selected configuration, save or download the configuration.

The setup view is split in 3 sections as follows:

• In the left section you can define or load a setup configuration:

o Create a New drive/motor setup. Opens the “Select ElectroCraft Product“ dialogue.
Select your drive/motor type. Depending on the product chosen, the selection may
continue with the motor technology (for example: brushless motor, brushed motor) or the
control mode (for example stepper – open-loop or stepper – closed-loop) and type of
feedback device (for example: incremental encoder, SSI encoder).

o Open an existing setup. Loads a drive/motor setup configuration, which was previously
defined and saved on your PC. The command opens the “Select Drive/Motor Setup"
dialogue, allowing you to select a drive/motor setup. Note that a setup is not a single file,
but a collection of files which are saved together in the same folder. The folder name is
the name of the setup. Hence you select a setup by choosing a folder. By default,
MotionPRO Developer saves the setup data in "Setup Files" subdirectory of the
MotionPRO Developer main folder

o Upload from Drive/Motor the setup data.

• In the middle section you can view and edit the setup data. You may also load and convert
setup data from a previous versions:

© ElectroCraft 2013 15 MPD User Manual

o View/Modify setup. Opens 2 setup dialogues: for Motor Setup and for Drive setup
through which you can configure and parameterize a ElectroCraft drive/motor. In the
Motor setup dialogue you can introduce the data of your motor and the associated
sensors. Data introduction is accompanied by a series of tests having as goal to check
the connections to the drive and/or to determine or validate a part of the motor and
sensors parameters. In the Drive setup dialogue you can configure and parameterize the
drive for your application.

o Load from a previous version. Converts setup data from a previous version into the up-
to-date version. The command is foreseen to provide migration of setup data defined long
time ago into the latest version for that configuration. The command has sense only if
there are differences between the user interface opened with the old setup data and that
opened for the same configuration (drive, motor and sensor) with the command New.

• In the right section, you can save the setup data on your PC or download it on the
drive/motor

o Save. Opens “Save Drive/Motor Setup” dialogue where you can select where to save
the setup data. Note that a setup is not a single file, but a collection of files which are
saved together in the same folder. The setup name gives the name of the associated
folder. By default, MotionPRO Developer saves the setup data in "Setup Files"
subdirectory of the MotionPRO Developer main folder

o Download to Drive/Motor. The command will download the actual setup data into
the drive EEPROM in the setup table.

See also:

Application – Motion

Application – Axis Selection

Motion Project Concept

© ElectroCraft 2013 16 MPD User Manual

2.4. Application - Motion

In the Motion part of an application, you can program the motion sequences to be executed by the
motion controller (dedicated or built-in programmable drives/motors).

Programming motion on a ElectroCraft motion controller or programmable drive/motor means to create
and download a MPL (ElectroCraft Motion Program Language) program into the motion
controller/drive/motor memory. The MPL allows you to:

• Set independent motion modes (profiles, PVT, PT, electronic gearing or camming, etc.)

• Set 2D/3D coordinate motion modes (Vector Mode, Linear Interpolation)

• Change the motion modes and/or the motion parameters

• Execute homing sequences

• Control the program flow through:

o Conditional jumps and calls of MPL functions

o MPL interrupts generated on pre-defined or programmable conditions (protections triggered,
transitions on limit switch or capture inputs, etc.)

o Waits for programmed events to occur

• Handle digital I/O and

• analogue input signals

• Execute arithmetic and logic operations

• Perform data transfers between axes

• Slave axes management from Motion Controller

• Control motion of an axis from another one via motion commands sent between axes

• Send commands to a group of axes (multicast). This includes the possibility to start
simultaneously motion sequences on all the axes from the group

• Synchronize all the axes from a network

A MPL program includes a main section, followed by the subroutines used: functions, interrupt service
routines and homing procedures. The MPL program may also include cam tables used for electronic
camming applications.

When you select the “M Motion” part of an application, you access the main section of your application
MPL program.

© ElectroCraft 2013 17 MPD User Manual

You can select the other components of a MPL program too. Each has 2 types of access views:

• Definition and/or selection view, with the following purposes:

• Homing Modes: select the homing procedure(s) to use from a list of already defined procedures.

• Functions: create new MPL functions (initially void) and manipulate those defined: delete,
rename, change their order in the program

• Interrupts: choose the MPL interrupt service routines you want to view/change their default
implementation

• Cam Tables: create new cam tables loaded from other applications or imported from text files and
manipulate those defined: select those to be downloaded and their order, delete or rename.

Remark: The Cam Table are available only in applications developed for programmable drive/motors.

• Edit view – for editing the contents. There is one edit view for each homing procedure and cam table
selected, for each function defined and each interrupt chosen for view/edit.

When you start a new application the edit views of the above components are not present as there is
none defined. After you have defined/selected the first homing procedure(s), function(s), interrupt(s) or
cam table(s), select again the corresponding view in the project window left side tree. Below it, you’ll see
the component(s) defined/created. Choose one and on the right side you’ll see the corresponding edit
view.

© ElectroCraft 2013 18 MPD User Manual

In order to help you create a MPL program, MotionPRO Developer includes a Motion Editor which is
automatically activated when you select “M Motion” – the main section view or an edit view for a homing
procedure, function or interrupt service routine. The Motion Editor adds a set of toolbar buttons in the
project window just below the title bar. Each button opens a programming dialogue. When a programming
dialogue is closed, the associated MPL instructions are automatically generated. Note that, the MPL
instructions generated are not a simple text included in a file, but a motion object. Therefore with Motion
Editor you define your motion program as a collection of motion objects.

The major advantage of encapsulating programming instructions in motion objects is that you can very
easily manipulate them. For example, you can:

• Save and reuse a complete motion program or parts of it in other applications

• Add, delete, move, copy, insert, enable or disable one or more motion objects

• Group several motion objects and work with bigger objects that perform more complex functions

See also:

Motion Editor toolbar buttons for motion programming

MotionPRO Developer Workspace

Homing Modes

Functions

Interrupts

CAM Tables

Application – Setup

Application – Axis Selection

Motion Project Concept

© ElectroCraft 2013 19 MPD User Manual

2.4.1. Homing Modes

This view allows you to choose the homing procedures associated with the selected application.

Electrocraft provides for each programmable drive/motor a collection of up to 32 homing procedures.
These are predefined MPL functions, which you may call after setting the homing parameters. You may
use these homing procedures as they are, or you may modify them according with your application
needs.

In this view you can see all the homing procedures defined for your drive/motor, together with a short
description of how it works. In order to select a homing procedure, check its associated button. You may
choose more then homing procedure, if you intend to use execute different homing operations in the
same application. The selected homing modes appear in the project window left side selection tree, in the
current application, as a sub-tree of the Homing Modes section. Select a homing procedure from this list.
On the right side you’ll see the associated function in the Homing Procedures Edit. Here you can check
and modify the contents of the selected homing procedure(s).

Remark: Only the selected homing modes are available as options in the Motion – Homing dialogue.

Once modified, a homing procedure is memorized together with the application. However, if you’ll create
a new application, the homing procedure changes will are not preserved. If you want to preserve them,
either create the new application by duplicating that with modified homing procedures, or load the entire
motion from the application with modified homing procedures.

Press the Reload Default button to restore the default homing procedure.

See also:

Homing Modes Edit

© ElectroCraft 2013 20 MPD User Manual

Application – Motion

© ElectroCraft 2013 21 MPD User Manual

2.4.2. Homing Modes Edit

In the Homing Procedures Edit, you can view and modify the contents of the homing procedure selected
on the left-side tree. This is a standard motion view offering access to all the MPL programming features.

See also:
Motion Editor toolbar buttons for motion programming
MotionPRO Developer Workspace
Homing Modes
Application – Motion

© ElectroCraft 2013 22 MPD User Manual

2.4.3. Functions

This view allows you to add and remove the MPL functions associated with the selected application. You
may also rename and change the functions download order.

Type in the edit the name, and press the Add button to create a new function. Select a function from the
list and press Rename to change its name, Delete to erase it, Move Up or Move Down to change its
position in the list.

The MPL functions defined appear in the project window left side selection tree, in the current application,
as a sub-tree of the Functions section. Select a function from this list. On the right side you’ll see the
function contents in the Functions Edit.

See also:

Functions Edit

Application – Motion

© ElectroCraft 2013 23 MPD User Manual

2.4.4. Functions Edit

In the Functions Edit, you can view and modify the contents of the MPL function selected on the left-side
tree. This is a standard motion view offering access to all the MPL Programming features.

See also:

Motion Editor toolbar buttons for motion programming

MotionPRO Developer Workspace

Functions

Application – Motion

© ElectroCraft 2013 24 MPD User Manual

2.4.5. Interrupts

This view allows you to see, define and modify the MPL interrupt service routines (ISR).

Each drive/motor has a default ISR for each of the 12 MPL interrupts. In order to use the default ISR,
select Default for all the MPL interrupts. If you want to see or modify any of the default ISR, choose
option User defined. The MPL interrupts with option User defined appear in the project window left side
selection tree, in the current application, as a sub-tree of the Interrupts section. Select an interrupt from
this list. On the right side you’ll see the ISR contents in the Interrupt Edit. Here you can check and
modify the selected ISR according with your needs.

In can cancel your modifications and to return to the starting point i.e. the default ISR by pressing Reload
Default button. You can also return at any moment to the default ISR by selecting again the Default
option.

Remark: Some of the drive/motor protections may not work properly if the MPL Interrupts are handled
incorrectly. In order to avoid this situation keep in mind the following rules:

• The MPL interrupts must be kept globally enabled to allow execution of the ISR for those MPL
interrupts triggered by protections. As during a MPL interrupt execution, the MPL interrupts are
globally disabled, you should keep the ISR as short as possible, without waiting loops. If this is not
possible, you must globally enable the interrupts with EINT command during your ISR execution.

• If you modify the interrupt service routines for Int 0 to Int 4, make sure that you keep the original
MPL commands from the default ISR. Put in other words, you may add your own commands, but
these should not interfere with the original MPL commands. Moreover, the original MPL
commands must be present in all the ISR execution paths.

See also:

Interrupts Edit

Application – Motion

© ElectroCraft 2013 25 MPD User Manual

2.4.6. Interrupts Edit

In the ISR Edit, you can view and modify the contents of the service routine for the MPL interrupt selected
on the left-side tree. This is a standard motion view offering access to all the MPL programming features.

See also:

Motion Editor toolbar buttons for motion programming

MotionPRO Developer Workspace

Interrupts

Application – Motion

© ElectroCraft 2013 26 MPD User Manual

2.4.7. CAM Tables

This view allows you to specify the cam tables associated with the selected application.

You can:

• Load cam files (with extension .cam) defined in other applications

• Import cam tables from text files with format: 2 columns, one for X, the other for Y, separated by
space or tab

• Add new cam files

Once defined, a cam table can be placed in one of the following two lists: Available or Selected. Move in
the Selected list those cam tables you intend to use in your application. You can have one or more cam
tables, up to the limit of the memory space reserved for cams (the remaining memory for cam tables is
shown by Free Buffer Space indicator). Use Move Up and Move Down buttons to change the cam
tables order in the Selected list i.e. the order in which these cam tables will be downloaded. Move in the
Available list all the cam tables you don’t use now, but may use later. Use Delete to remove a cam table
from the Available list. Select a cam from either list and change its name with Rename or use [<] or [>]
to move it from one list to the other. Use [<<] or [>>] to move all the cams from one list to the other. By
default, all the new added cam tables are placed in the category Selected.

Remark: Check the application Memory Settings if you want to change the space reserved for cam tables

First time when you run (i.e. press the Run button) a new application, the associated cam tables from the
Selected list are automatically downloaded into the drive/motor together with the motion application.
Later on, the cam tables download is repeated only if these are modified of the Selected list is changed.

© ElectroCraft 2013 27 MPD User Manual

There is also a dedicated menu command Application | Motion | Download CAM Tables, for the cam
tables download.

Once defined, all the cams from the Selected list appear in the project window left side selection tree, in
the current application, as a sub-tree of the CAM Tables section. Select a cam table from this list. On the
right side you’ll see graphically the cam profile in the CAM Tables Edit, view, where you may edit the
cam file.

When you create a new cam table, you must:

• Type its name in the edit field and press the Add button

• Select the cam table from the left side selection tree and edit or import the points

See also:

CAM Tables Edit

Application – Motion

© ElectroCraft 2013 28 MPD User Manual

2.4.8. CAM Tables Edit

In the CAM Tables Edit, you can view, modify, export or import a cam table. All these operations refer to
the selected cam on the left-side tree.

The cam tables are arrays of X, Y points, where X is the cam input i.e. the master position and Y is the
cam output i.e. the slave position. The X points are expressed in the master internal position units, while
the Y points are expressed in the slave internal position units. Both X and Y points 32-bit long integer
values. The X points must be positive (including 0) and equally spaced at: 1, 2, 4, 8, 16, 32, 64 or 128 i.e.
having the interpolation step a power of 2 between 0 and 7. The maximum number of points for one cam
table is 8192.

As the X points are equally spaced, these are completely defined by only 2 data: the Master start value
or the first X point and the Interpolation step providing the distance between the X points.

When you create a new cam table, you may either import or edit its points.

Press the Import… button to import the cam table points from a simple text file (.txt), with 2 columns, first
the X points and the column with Y points. A tab or a space must separate the columns.

© ElectroCraft 2013 29 MPD User Manual

In order to edit a cam table:

• Set the first X point value in Master start value

• Set a value between 0 and 7 in Interpolation step 2^

• Set the first Y value and press the Insert button. Repeat these operations until you define all the
cam Y points.

Remark: The X points are automatically calculated and displayed as you introduce the Y points.

To navigate between the cam table points use [≤<] , [>≥] buttons. Use Remove or Update to delete or
change the currently selected cam table point.

You may also Export a cam table in the same text file format (.txt) used for import. When the project is
saved, for each application, the associated cam files (.cam.) are saved in the application folder.

See also:

CAM Tables

Motion – Electronic Camming

Application – Motion

© ElectroCraft 2013 30 MPD User Manual

3. MotionPRO Developer Workspace

Menu Bar

The Menu Bar is the toolbar at the top of the screen that contains all MotionPRO Developer menu
commands.

When MotionPRO Developer creates a new project, besides the Project window, it opens also the
Logger and 3 predefined Control Panel windows (1_Motion Status and 2_Drive IO and 3_Drive
Status).

Toolbar

The buttons in the toolbar represent commonly used MotionPRO Developer commands.

Status bar

In the status bar you will find the following information:

• The communication status:

o ”Online” if the communication between the drive/motor associated with to the selected and
MotionPRO Developer is established

o “Offline” if the MotionPRO Developer can’t communicate with the drive/motor associated to
the selected application.

• Axis ID – the axis ID of the selected application if the communication between the drive/motor
and MotionPRO Developer is established

• Product ID – the product ID of the drive/motor associated to the selected application

• Firmware ID – the version of the firmware found on the drive/motor

• Setup ID – the identification code for the setup configuration used in the selected application

• The coordinates of the mouse pointer in the data logger graphs. This information is available only
when the Data Logger is selected.

See also:

Motion Programming Toolbars

Application – Motion

Functions Edit

Interrupts Edit

© ElectroCraft 2013 31 MPD User Manual

3.1. Menu Bar

The Menu Bar is the toolbar that contains all MotionPRO Developer menu commands:

3.1.1. Project Menu

New. Use this command to create a new project. The "New Project" menu dialog will open.

Open. Use this command to open an already defined Motion System project that was previously saved
and closed. An "Open MotionPRO Developer project" dialogue will open, allowing you to select a
project name

Close. Use this command to close the current project.

Save. In order to save the changes done to the current project use this command.

Save As….Use this command to save the current project with a appropriate name. The “Save Project”
window opens, allowing you to create a new folder where the project will be saved.

Archive. Use this command in order to compress all the files of a project. This command creates a
unique file, having the name of the project and the suffix .m.zip.

Restore. An .m.zip file, saved by default in the /Archives subdirectory, can be copied into a different
location (another computer), and then re-opened using this command. This will simplify the process of
project transfer from one location to another, as the project consists from more files, which must be
restored into specific sub-directories, in relation to the applications included in the project.

Print. to generate a printed image of some of the project windows (as logger, MPL source code), select
the respective window, and use this command.

Print Preview. Use this menu command in order to preview the plot before printing

Print Setup. The command opens a dialogue where you configure the printer used by MotionPRO
Developer

A list of the last projects opened.

Exit. In order to quit the MotionPRO Developer use this menu command.

© ElectroCraft 2013 32 MPD User Manual

3.1.2. Application Menu

New…Use this command in order to add a new application to your current project.

Duplicate. Use this command to duplicate the currently active application. This command creates an
identical application in the project, asking you for a different application name. The duplicate operation
copies all the contents of the directory associated to the copied application, and create the new one in the
current project. This operation is useful if you want to modify an existing application, while keeping the
original one unchanged. Selecting one application or another will allow you to execute and compare the
two applications in a straightforward manner.

Insert… Using you can include an already defined application from a different project. This command
opens a dialog that allows you to select the application to be copied. The import operation copies all the
contents of the directory associated to the copied application, and create a new one in the current project.
You can rename the application in order to change its name.

Edit….. This command opens the Application Attributes dialogue that allows you to rename the
currently active application and/or to change the Axis ID.

Delete. You can delete the currently active application using this command.

Setup

Motion

Run. Use this menu command to start you application.

Axis On. This command enables the PWM signals of the drive/motor associated to the selected
application.

Axis Off. This command disables the PWM signals of the drive/motor associated to the selected
application.

Reset. Use this command to reset the drive/motor associated to the selected application.

Show slave errors. This command displays the errors reported by the slave axes to a multi-axes Motion
Controller.

Binary Code Viewer The “Binary Code Viewer” is a tool included in MotionPRO Developer which offers
you a quick way to find the binary code that must be sent / will be received by your host processor, when
communicating with a ElectroCraft drive.

Create PRO EEPROM Program File. The option Motion and Setup creates a .sw file with complete
information including setup data, MPL programs, cam tables (if present) and the drive/motor configuration
ID. The option Setup Only produces a .sw file identical with that produced by PROconfig i.e. having only
the setup data and the configuration ID.

Export to MPL_LIB. With this command you export the setup information, of the selected application, for
use with MPL_LIB. The setup information will be stored in two files setup.cfg and variables.cfg.

© ElectroCraft 2013 33 MPD User Manual

3.1.3. Application | Setup Menu

New… Create a new drive/motor setup using this command. A new window “Select ElectroCraft
Product “will open in which you need to select the template on which the new motion application will be
based. The collection of MotionPRO Developer templates is organized for different configurations,
based on the different types of ElectroCraft drives, and the associated types of motors that can be driven
by these drives.

Open… Use this menu command for opening an already defined drive/motor setup that was previously
saved and closed. A “Select Drive/Motor Setup" dialogue will open, allowing you to select a drive/motor
setup name. By default, MotionPRO Developer saves each motion project as a separate directory
having the same name as the project itself, in the "Setup Files" subdirectory of the MotionPRO
Developer program directory.

Upload from Drive/Motor. Use this command to upload the setup from the drive/motor.

Import from a Previous Version… Converts setup data from a previous version into the up-to-date
version. The command is foreseen to provide migration of setup data defined long time ago into the latest
version for that configuration.

Edit/New. Using this menu command will open the drive setup window and motor setup window. In these
windows you can view or change the drive and motor settings.

Download to Drive/Motor. Use this command to download the setup to drive/motor.

Save As…Use this command to save the setup on the disk. A “Save Drive/Motor Setup” window will
open in which you can create a new folder for the setup to be saved in.

© ElectroCraft 2013 34 MPD User Manual

3.1.4. Application | Motion Menu

Build. Using this command you compile and link the MPL program, the result is a file with out extension
ready to be downloaded to the drive/motor.

Download CAM Tables. Use the command to download on the drive/motor EEPROM the cam tables
defined for the selected application.

Download Program. The command downloads on the drive/motor the out file created for the selected
application. The out file is created using the command Build.

Load from Another Application… This command allows you to load the motion section defined in a
different application. All motion section components (motion sequences, functions, ISR or homing
sequence) of the current application are overwritten by this command.

Import Sequence… This command allows you to load/insert motion objects previously saved in *.msq
files. These are appended below the current position e.g. the immediately after the selected motion
object.

Export Sequence… Use this command to save a part of your program (one or more motion object) in a
separate motion file .The operation saves the selected motion objects in a file with extension *.msq.

Import G-Code file… This command allows you to convert G-Code sequences into MPL motion
language instructions for a multi-axis Motion Controller.

Edit. Use this command after select a motion sequence to change its parameters. The dialogue
associated with the selected motion sequence opens.

Insert. Reserved for future developments.

View Generated MPL Code… This command allows you to view the MPL Code generated for the motion
sequences selected in the Motion Editor dialogue.

Duplicate. This command duplicates the selected motion sequence.

Move Up. This command moves up the selected motion sequence.

Move Down. This command moves down the selected motion sequence.

Delete. This command allows you to delete the selected motion sequence.

Group. This command allows you to group a number of motion sequences in a new object containing all
the selected motion objects

Ungroup. Use this command to restore the motion objects list instead of the group object.

Enable For debugging, you have the possibility to remove motion sequences (one or more motion
objects) from the motion program like commenting lines in a text program. Use this menu command to
uncomment (enable) the selected motion sequences.

Disable .Use this command to comment (disable) the selected motion sequences.

Add Function. This command creates a new function (named “Untitled”) and the “Function Window”
will open. In this window you can insert the motion sequences to be executed when the function is called.

Delete Function. This command deletes the currently selected function.

© ElectroCraft 2013 35 MPD User Manual

3.1.5. Communication Menu

Setup… The “communication setup” dialogue will open which allows you to select the communication
type between RS-232, RS-485 and CAN-bus with several PC to CAN interface boards, to choose the
desired baud rate and to setup the communication parameters.

Refresh Select the command if during operation the communication is interrupted (for example if the
drives power is turned off) in order to restore communication

Work Offline When this option is selected the MotionPRO Developer doesn’t attempt to communicate
with the drives/motors associated to the defined applications.

Show Info In Output View | The menu command allows selecting the information listed in the output
view. The output view is showed/hided from menu View | Output.

None – when you select this option no information is presented in Output view.

Errors – use this option to view errors occurred during communication. Errors due to programming
error, detected during program build, are automatically listed in Output View.

Warnings – when this option is selected in the Output view appears the warning messages of the
selected communication channel.

Traffic – when this option is selected in the Output view are listed all messages send or received by
MotionPRO Developer.

Unrequested messages – use this option to list messages send automatically by the drive connected
to the PC.

EEPROM Write Protection. From this menu you access the options related to EEPROM write protection
feature. You have the following options:

Do not protect EEPROM after download – when this option is selected the EEPROM is not
protected

Write protect last ¼ of EEPROM after download – when this option is selected the last quarter of
the EEPROM is write protected after the download of setup data or MPL program

Write protect last ½ of EEPROM after download – when this option is selected the last half of the
EEPROM is write protected after the download of setup data or MPL program

Write protect entire EEPROM after download – when this option is selected the entire EEPROM is
write protected after the download of setup data or MPL program

Scan Network. Use this command to detect online drives/motors, members of a CAN network. The
drives/motors detect are listed in the Output View along with their axis ID and firmware version.

© ElectroCraft 2013 36 MPD User Manual

3.1.6. View Menu

Project. Use this command to visualize the “Project Window”

Command Interpreter. Use this command to visualize the “Command Interpreter Window”

Logger. Use this command to visualize the “Logger Window”

Multi-Axis Logger. Use this command to visualize the “Multi-Axis Logger Window”

Control Panel. Use this command to show/hide the “Control Panel” windows defined for the selected
application. By default there are 3 control panels defined. Check the windows you want to show/hide from
the list.

• 1_Motion Status

• 2_Drive IO

• 3_Drive Status

Memory The command opens the Memory Window, within you can view/modify the drive/motor memory
contents.

Remark: This is a feature is a very low level function, it is NOT recommended to modify memory contents
without a deep knowledge of the use made by the ElectroCraft drive of each memory location you intend
to modify.

Output. Use this command to visualize the “Output Window”. From Communication | Show Info In
Output View menu you select what information is presented in the window.

Refresh The command refreshes the content of Memory window. It’s available only when the Memory
window is active.

Toolbar. Use this command to hide/show the MotionPRO Developer toolbar.

Status bar. Use this command to hide/show the status bar from the bottom of MotionPRO Developer
window.

View graph plot. Previously saved plots from Logger or during controllers tuning can be opened from
this menu command.

3.1.7. Logger

Variables… This menu command opens the dialogue from where you manage the plotted variables.

Plot Setup… This menu command allows you to select and group on specific graphic subplots the
variables which will be stored during the motion execution through the data logging procedure.

Plot Options… This menu command allows you to set the graphical parameters of all the variables
selected to be plotted in any of the four subplots of Logger View, as colors, line width and pattern,
background, axes colors, grid options and measurement units.

Arrange | From this menu entry you can define the position of the subplots on the Logger View. The
command is effective if more than one subplot are defined

Auto: use a default disposal of the subplots, depending on their number (2, 3 or 4).

© ElectroCraft 2013 37 MPD User Manual

Horizontal: the plot window is divided in horizontal regions for sub-plotting. The subplots are
displayed in a row, from left to right, on the graphic window.

Vertical: the plot window is divided in vertical regions for sub-plotting. The subplots are displayed one
below the other

Zoom | This menu commands allows you to select fixed zoom areas of the first subplot on the Logger
View

Zoom In: zoom-in the graphical image of the first subplot.

Zoom Prev: zoom-out one step the graphical image of the first subplot.

Zoom Out: zoom-out back to the initial graphical image of the first subplot.

Start Use this menu command to start storing data onto the drive/motor memory.

Upload Data. Use this menu command to get the data from the drive/motor memory and display them in
the logger window.

Stop Data Upload. Use this menu command to stop the logged data uploading process

Import… Use this menu command in order to load a pre-defined logger configuration into a special
format file. Thus, all logger settings, including selected variables, pre-defined sub-plots contents, and
other preferences (colors, etc), can be loaded, replacing the actual logger settings.

Export…Use this menu command in order to save the actual logger configuration into a special format
file. Thus, all logger settings, including selected variables, pre-defined sub-plots contents, and other
preferences (colors, etc), can be saved on that file

Save graph as… This menu command allows saving the selected graph into ElectroCraft plot files
format, with extension TPT. A dialog is opened which ask the user to indicate the name of the file. The
saved file may be opened using the menu command View | View Plot Graph…

Export to WMF. This menu command will be used to save the actual graphic window contents to a file on
the system disk, into a standard format, the Windows Metafile Format (or WMF). A special dialog is
opened, similar to the Export… one, which asks the user to indicate the name of the metafile file (its
default extension is “.WMF”). The saved file may then be imported in other Windows applications that
have adequate graphic filters and recognize the metafile format. Thus, the graphics may be included in
other documents; more text may be added to the plots, colors and other features may be changed

Export to ASCII. This menu command will be used to save the actual values of all the uploaded
variables values, on a file on the system disk, into a standard ASCII text format. A special dialog is
opened, similar to the Export… one, which asks you to indicate the name of the ASCII file (its default
extension is “.txt”). The saved file may then be examined, and also read and imported in different other
programs as Excel, Word, etc.

Print… The command opens the dialogue from where you can print the selected plot

Print Preview With this command you can preview the plot before printing

Print Setup…The command opens a dialogue where you configure the printer used by MotionPRO
Developer

© ElectroCraft 2013 38 MPD User Manual

3.1.8. Control Panel

Start. Use this menu command to start the control panels of an application. From this moment, all the
contents of all the objects contained in the visible control panels of that application will be updated and
displayed on the screen.

Stop. Use this menu command in order to stop the update of information on the control panels of the
application. Note that this command will delete all the information associated to that control panel

Customize. Use this menu command in order to be able to customize a control panel. A special toolbar
will be displayed, containing all the possible objects, which can be added in a control panel. You’ll be able
to add, remove and parameterize all the objects of a control panel. Note that during the parameterization
stage, all the control panels are stopped.

Rename… A name must be given to a control panel at the moment of its loading from an external file, or
at its creation. This name is displayed in the window bar of the panel. You can change this name using
this menu command.

Export to File. Use this menu command in order to save a defined control panel on an external file. This
will allow you to load and use this control panel in a different application.

Edit Active Item… Choosing this menu command will open its specific parameterization dialog. This
dialogue is automatically opened when a new object is defined.

Align to | Use this menu command in order to align all the objects which are selected, at left, right, top or
bottom. Note that the reference position is taken from the LAST selected object in the currently selected
objects.

Left - align the selected objects along their left side

Right - align the selected objects along their right side

Top - align the selected objects along their top edges

Bottom - align the selected objects along their bottom edges

Space evenly | Use this menu command in order to equally space all the objects which are selected,
horizontally (across) or vertically (down). Note that the reference position is taken from the selected
objects placed in the extremes of the currently selected objects.

Across. Use this menu command to space objects evenly between the leftmost and the rightmost
control selected.

Down. Use this menu command to space objects evenly between the topmost and the bottommost
object selected.

Make same | You can manually resize an object by using the specific resize mouse cursors and the
mouse left-button. If more objects are selected, this menu commands allows you to make the same width,
height or size (both width and height) for all these objects. Note that there are some limits when trying to
resize some of the objects. Note that the reference size is taken from the LAST selected object in the
currently selected objects.

Width - size objects with the same width as the dominant object;

Height - size objects with the same height as the dominant object;

Size - size objects with both the same height and the same width as the dominant object.

Send to back. Use this menu command to send to back the selected items.

Send to front. Use this menu command to send to front the selected items.

© ElectroCraft 2013 39 MPD User Manual

Add Control Panel… Use this menu command to define a new control panel.

Add Control Panel from file… Use this menu command to add into your current application control
panels defined in another application (e.g. associated with another setup file).

Delete Control Panel | Use this menu command to delete a control panel.

• 1_Motion Status

• 2_Drive IO

• 3_Drive Status

• Other Control Panels created

3.1.9. Help

Help Topics

Getting Started

About MotionPRO Developer… – The menu command opens a dialogue with information about
MotionPRO Developer version

Enter registration info…

Check Updates – From this menu command you launch the PRO Update utility.

© ElectroCraft 2013 40 MPD User Manual

3.2. Toolbar

The buttons in the toolbar represent commonly used MotionPRO Developer commands.

 New. Use this icon to create a new project. The "New Project" menu dialog will open.

 Open. Use this icon to open an already defined motion project that was previously saved and closed.
The "Open MotionPRO Developer project" dialogue will open, allowing you to select a project name.

 Save. In order to save the changes done to the current project use this icon. If the current project has
not be named a “Save Project” window will open, allowing you to create a new folder where the project
will be saved.

 Print. Use this icon in order to print the motion sequences from active window select some printing
parameters such as the printer, the paper size and orientation.

 View Project. Use this icon to visualize the “Project Window”

 Command Interpreter. Use this icon to visualize the “Command Interpreter”

 View Logger. Use this icon to visualize the “Logger” window

 View Multi-Axis Logger. Use this icon to visualize the “Multi-Axis Logger” window

 View Control Panel. Use this icon to visualize the “Control Panel” windows. Check the windows you
want to be open from the existing list.

 Edit/View Setup. Using this menu command will open the drive setup window and motor setup
window. In these windows you can view or change the drive and motor settings.

 Import Setup from Drive/Motor. Use this icon to upload an existing setup from the drive/motor.

 Download Setup to Drive/Motor. Use this icon to download the setup to drive/motor.

 Run. Use this icon to download and run your application.

© ElectroCraft 2013 41 MPD User Manual

 Axis On. Enable PWM signals.

 Axis Off. Disable PWM signals.

 Reset Active Drive/Motor. Send a reset command to the selected drive/motor.

 Start Logger. Use this toolbar icon to start storing data onto the drive/motor memory. The button is
active only when the logger window is active.

 Upload Logger. Use this button to upload data from drive/motor. The button is active only when the
logger is started.

 Stop Logger Upload. Use this button to stop the upload of data from drive/motor. The button is
active only when data from the drive is uploaded.

 Start Control Panel. Use this button to start the selected control panels.

 Stop Control Panel. Use this button to stop the selected control panels. The button becomes active
when the control panels are started.

 Refresh Communication. Use this button to reestablish communication with the drive/motor.

 Help. Opens the help page associated with the active window.

© ElectroCraft 2013 42 MPD User Manual

4. Evaluation Tools

4.1. Data Logger

4.1.1. Data Logger

The Data Logger is an advanced graphical analysis tool, allowing you to do data acquisitions on any
variable of your drive / motor and plot the results.

In order to set up / manage the data logger module, simply select the View | Logger menu command

(alternatively, use the associated toolbar icon).

Once the Logger window is opened, you have access to its associated menu by clicking on the right
mouse button when positioned in the logger window. This opens the Logger pop-up menu. This menu
has the following menu sub-commands:

Variables / Plot Setup... / Plot Options... / Arrange/ Zoom/ Start / Upload Data / Stop Data Upload /
Import… / Export… / Export to WMF / Export to ASCII / Print… / Print Preview / Print Setup…

Depending on the state of the Logger, some of these menu sub-commands will be enabled or not, hence
you can execute only the allowed operations for a given situation.

© ElectroC

4

Start the

Use the L
the select
logger win

Each time
overwrite

Upload D

Use the L
the drive/

Stop Data

Use the L
logged da

See also:

Data Logg

Craft 2013

.1.2. Data L

logger

Logger | Star
ted variables
ndow is open

e when you
the previousl

Data

Logger | Uplo
/motor memo

a Upload

Logger | Sto
ata uploading

ger Utility

Logger - Sta

rt menu comm
. Data is save
ed, the data a

execute a L
y stored data

oad Data me
ory and displa

op Data Uplo
process

43

art

mand (or the
ed in the driv
acquisition is

Logger | Sta
a. Once the bu

enu command
ay them in the

oad menu co

3

associated to
ve/motor RA
started autom

art command
uffer is full, th

d (or the asso
e logger windo

ommand (or t

oolbar icon
AM memory. I
matically whe

, the data a
he data storag

ociated toolba
ow.

the associate

MPD U

) to start a d
In MotionPRO
n you press t

acquisition is
ge process is

ar icon) to

ed toolbar ico

User Manual

data acquisiti
O Developer,
the Run butto

restarted an
stopped.

o get the data

on) to sto

on for
if the

on.

nd will

a from

op the

© ElectroCraft 2013 44 MPD User Manual

4.1.3. Data Logger - Plot Options

The Logger | Plot Options… menu command allows you to set the graphical parameters of all the
variables selected to be plotted in any of the four subplots of Logger View, as colors, line width and
pattern, background, axes colors, grid options and measurement units.

The list of variables that will be stored during the data logging must be defined using the Logger |
Variables… menu command. Once this list defined, you may use the Logger | Plot Setup dialog in order
to select the corresponding variables and distribute them on the graphics subplots for further
visualization.

With the plot variables selected in the Logger | Plot Setup dialog, you may open the Logger Plot
Options dialog in order to examine / modify the predefined graphic attributes associated to the curves,
axes, etc.

The dialog contains the complete list of the variables selected to be stored for each of the possible four
subplots that may be defined. For each subplot, any variable to be plotted on it may be selected from the
list grouped under the title Curves.

You may switch between the subplots using the corresponding tabs associated to each subplot. By
default, each subplot tab is named as Subplot options if no name was given to the curve. Otherwise, if
that name was defined, it is used as the tab name. (You may freely define each of the subplot names in
the Logger | Plot Setup dialog).

For each subplot, you may select any of the variables from the Curves list. Once a variable is selected
(outlined) in the list, its graphical attributes are displayed and may be examined and/or modified by you.

Thus, you may modify:

• The curve color, using the Color drop-down list of available colors (up to 28 colors may be used);

• The curve style, using the Style drop-down list of available line styles (up to 5 line styles may be
used);

• The curve width, using the Width drop-down list of available line widths (1 to 4 line widths may be
used)

© ElectroCraft 2013 45 MPD User Manual

You can change in the Measure Units drop-down list the units in which to display the variables stored.

The background color may be defined for each subplot, using the Background Color drop-down list (up
to 28 colors may be used).

The axis color may be defined for each subplot, using the Axis Color drop-down list (up to 28 colors may
be used).

The grid option for each subplot may be set/reset using the Grid check button.

You may also define the X-axis label and measurement unit, by editing the X-Axis edit control field and
respectively, by selecting the measurement unit from the associated drop-down list of possible units.

Use the Default button to reset all the selected measurement units for the curves.

Use the OK button to effectively apply the defined settings and exit back to the Logger View, by closing
the Logger - Plot Options dialog.

Use the Cancel button to cancel all the defined settings and exit back to the Logger View, by closing the
Logger - Plot Options dialog.

See also:

Data Logger Utility

© ElectroCraft 2013 46 MPD User Manual

4.1.4. Data Logger - Plot Setup

The Logger | Plot Setup… menu command allows you to select and group on specific graphic subplots
the variables which will be stored during the motion execution through the data logging procedure. Up to
four subplots may be defined.

The list of variables, which will be stored during the data logging, must be defined using the Logger |
Variables… menu command. Once this list defined, you may accede the Logger - Plot Setup dialog in
order to select the corresponding variables and distribute them on the graphics subplots for visualization.

The dialog contains the complete list of the curves selected to be stored, in the top of it. For each subplot,
the curves to be plotted on it may be chosen from the complete list of stored variables, grouped under the
title Available Curves.

You may switch between the subplots using the corresponding tabs associated to each subplot. By
default, each subplot tab is named as Subplot setup. You may freely define each of the subplot names.
The Subplot Title edit box contains the actual (if it was defined) subplot title. You may define or modify it
at any time by editing this edit control.

Each subplot has an associated list of the selected curves to be displayed on that subplot, grouped under
the name of Subplot Axis. The list may be updated by you by adding to / removing from it curves from
the Available Curves list.

A variable may be added to the subplot curves list by selecting it in the Available Curves list, with a left-
button mouse click (the selected variable becomes outlined), and by pressing on one of the Add to the

© ElectroC

list button
curve.

When add
curve in t
Subplot A

A curve m
button mo
button

Always, th
other vari
list as a Y
variable

The varia
are introd
vertical ax
axis symb
one).

If you wa
dependen
list, and a
variable w

By defaul
for the tw
Right axi

Use the O
the Logge

Use the C
Logger -

See also:

Data Logg

Craft 2013

ns: press

ding a new v
the Subplot A
Axis list, corre

may be remov
ouse click (th

.

he variable A
able to be ad
Y axis curve,

.

bles may be
duced as rela
xis, you need
bol . (A

nt to use a s
nce between t
add it to the

will replace the

t, the vertical
wo vertical axe

s names. You

OK button to
er - Plot Setu

Cancel button
Plot Setup d

ger Utility

 to add it

ariable to the
Axis list, the
esponding to

ved from the s
he selected c

Acquisition Tim
dded to the S

the program

related to the
ated to the le
d to double-c
A similar dou

special X-axis
two variables
Subplot Ax

e time variabl

l axes do not
es. The Labe
u may define

effectively ap
up dialog.

n to cancel al
dialog.

47

as the Y axis

e subplot curv
e added varia

the Y or X ax

subplot curve
curve become

me exists in
ubplot Axis

m automatical

e left or to th
ft vertical axi

click the vertic
ble-click on t

s coordinate,
s), you must s
xis list using
le as the X-ax

 have a nam
els group con
or modify the

pply the defin

l the defined

7

s curve, or pre

ves list, by ha
able will autom
xis selected to

es list by sele
es outlined), a

the Available
list. When th
ly inserts by

e right vertica
is . If y
cal axis symb
this symbol w

different that
select the des

the Add to X
xis coordinate

e. You may f
ntains the act
em at any time

ed settings a

settings and

ess the

aving at the s
matically repl
o be replaced

ecting it in the
and by press

e Curves list
e first variabl
default, as th

al axis of the
you want to
bol, which wi

will reverse ag

t the time va
sired X-axis va
X axis button
e.

freely define f
tual (if it was
e by editing t

and exit back

exit back to t

MPD U

 button to a

same time a
lace the prev
d.

e Subplot Ax
sing the Rem

t. Usually, yo
le is selected
he X-axis, the

e subplot. Usu
change this s
ill commute t
gain the vert

ariable (in ord
ariable in the
n . T

for each of th
defined) sub

he correspon

to the Logge

the Logger V

User Manual

add it as the X

selected (out
vious one fro

xis list, with a
move from th

ou will select
 and added t
e Acquisition

ually, the var
setting to the
to the right ve
ical axis to th

der to visualiz
Available Cu
he newly sel

he subplots n
bplot Left axi
nding edit con

er View, by c

iew, by closin

X axis

tlined)
m the

right-
he list

some
to that

Time

iables
e right
ertical
he left

ze the
urves
lected

names
s and

ntrol.

losing

ng the

© ElectroCraft 2013 48 MPD User Manual

4.1.5. Data Logger - Variables

Use this dialogue to select the variables to acquire for plotting. You can select any variable. All the
variables selected will be saved into the drive/motor memory at some predefined moments. The total
number of acquisitions points (“Acquisitions No” value) depends on the drive/motor memory available
for data logging storage. Also in this dialog you can select the data logging moments. The data logging
process may be: triggered by user, done in position/speed control loop (default), or into the current
loop. You can select to acquire data at each sampling loop or from n to n samplings.

From this dialogue you can:

• Select where to perform the data logging (“Data logger active in” box):

• Triggered by user (available only for some products)

• in the Position/Speed control loop (slow sampling loop) - default

• in the Current control loop (fast sampling loop). To be used with care, since it can impose to the
processor a too big overhead, and thus can affect the behavior of the motion system.

• See the location and size of the data acquisition buffer (“Acquisition Buffer” box), depending
on the memory available in your system. The memory location and size can’t be changed directly,
they result from the memory setting dialogue.

• Define the number of points to store (“Acquisition Number” parameter). Note that the maximum
value of this parameter is related to the size of the data acquisition buffer, as well as to the number of
variables in the list. The “Free buffer space” value can be used to estimate the remaining amount of
memory available for data logging.

• Choose the interval of data logging (“Save logged data at every” box). You can select if the data
logging will be performed at each x control loops.

© ElectroCraft 2013 49 MPD User Manual

• Manage the list of variables to be stored. You can:

• add variables to the list. Select the variable from New Variable drop-down list and press “Add”
button.

• delete variables from the list. Select the variable and use the “Delete” button to delete a variable
selected in the list, or the “Delete All” button to delete all the variables from the list.

See also:

Data Logger Utility

Memory Settings

© ElectroCraft 2013 50 MPD User Manual

4.1.6. Data Logger - Other Options

Arrange (Auto, Horizontal, vertical)

The Arrange menu command allows you to define the position of the subplots on the Logger View. The
command is effective if more than one subplot are defined. The following options are available:

• Auto: use a default disposal of the subplots, depending on their number (2, 3 or 4).

• Horizontal: the plot window is divided in horizontal regions for sub-plotting. The subplots are
displayed in a row, from left to right, on the graphic window.

• Vertical: the plot window is divided in vertical regions for sub-plotting. The subplots are displayed one
below the other.

Zoom (In, Prev, Out)

The Zoom menu command allows you to select fixed zoom areas of the selected subplot on the Logger
View. The following options are available:

• In: zoom-in the graphical image of the first subplot

• Prev: zoom-out one step the graphical image of the first subplot

• Out: zoom-out back to the initial graphical image of the first subplot

In order to freely zoom any graphical image, you may use the mouse to select a part of the current
subplot, allowing the zooming of the selected region. The selection is done by pressing the left mouse
button and dragging the zoom cursor on the display surface (the movement is bound to the area of the
subplot). On the release of the mouse button, the selected region is expanded to the dimension of the
entire subplot. Successive zooms may be applied to any of the subplots.

Note that, when moving the mouse cursor, you can see, at the bottom of the graphic window, the
coordinates on the left and right axes of the current cursor position on the screen. Thus, measurements
may be done on the plots. If no region is selected for zooming, the plot is unchanged.

Double-click the left mouse button, with the mouse in the graphical area of a subplot, in order to zoom-out
one level back from the currently displayed image.

Import…

Use the " Logger | Import…" menu command in order to load a pre-defined logger configuration into a
special format file. Thus, all logger settings, including selected variables, pre-defined sub-plots contents,
and other preferences (colors, etc), can be loaded, replacing the actual logger settings. This feature is
useful in order to easily select a pre-defined preferred logger environment. Such files can be created by
saving an already defined logger context, using the “Logger | Export…” menu command (see next
paragraph).

Note that the command also loads the plotted variables graphs, as existing when the .lgs file was saved.
Use the “Logger | Upload Data” menu command to load from the drive the current values for the
selected variables.

© ElectroCraft 2013 51 MPD User Manual

Export…

Use the " Logger | Export…" menu command in order to save the actual logger configuration into a
special format file. Thus, all logger settings, including selected variables, pre-defined sub-plots contents,
and other preferences (colors, etc), can be saved on that file. This feature is useful in order to save pre-
defined preferred logger environments. Such files can be latter-on loaded in order to re-create the same
logger context, using the “Logger | Import…” menu command (see previous paragraph).

Note that the command also saves the actual plotted variables graphs. Use the “Logger | Upload Data”
menu command to load from the drive the current values for the selected variables.

Export to ASCII

The Export to ASCII menu command will be used to save the actual values of all the uploaded
variables values, on a file on the system disk, into a standard ASCII text format. A special dialog is
opened, similar to the Export… one, which asks you to indicate the name of the ASCII file (its default
extension is “.txt”). The saved file may then be examined, and also read and imported in different other
programs as Excel, Word, etc. The file will contain:

• on the first line, the number n of saved curves, and the number m of saved points for each curve,
separated by the TAB character

• on the next m lines, n values for the saved curves on each line, separated by TAB characters. Each
line contains variables values corresponding to a data logger X-axis instant (time sampling)

Export to WMF

The Export to WMF menu command will be used to save the actual graphic window contents to a file on
the system disk, into a standard format, the Windows Metafile Format (or WMF). A special dialog is
opened, similar to the Export… one, which asks the user to indicate the name of the metafile file (its
default extension is “.WMF”). The saved file may then be imported in other Windows applications that
have adequate graphic filters and recognize the metafile format. Thus, the graphics may be included in
other documents; more text may be added to the plots, colors and other features may be changed.

Print…

The Print… menu command opens a dialogue which allows you to print the represented graphics.

Print Preview

The Print Preview menu command opens a new window allowing you to see how the graphics will look
after the print.

Print Setup

The Print Setup command opens a dialogue with settings related to the printer, paper size and
orientation.

See also:

Data Logger Utility

© ElectroCraft 2013 52 MPD User Manual

4.2. Control Panel

4.2.1. Control Panel

The Control Panel is a tool enabling you to define specific control panels where you can send commands
and visualize status variables.

Each ElectroCraft product comes with a set of pre-defined control panels. Using the “Customize” option,
you can define new control panels or modify the existing ones according with your application specific.

Handling the control panels

Displaying the control panels

Use the “View | Control Panel” command menu, in order to see the list of the currently defined control
panels. Click on a list item in order to alternatively change its display status (show or hide).

The “Control Panel” menu

All of menu commands are displayed and can be used when you click the right-mouse button, while over
a control panel window.

Adding pre-defined control panels to an application

Use the “Control Panel | Add Control Panel from file …” menu command to add into your current
application control panels defined in another application (e.g. associated with another setup file).

Adding new control panels to an application

Use the “Control Panel | Add Control Panel” menu command to define a new control panel (see next
paragraphs how to customize a control panel).

© ElectroCraft 2013 53 MPD User Manual

Deleting control panels from an application

Use the “Control Panel | Delete Control Panel” menu command in order to delete a control panel.

Activating the control panels of an application

Use the “Start Control Panel” button or the “Control Panel | Start” menu command to start the
control panels of an application. From this moment, all the contents of all the objects contained in the
visible control panels of that application will be updated and displayed on the screen.

Important notes:

1. The update rate depends on the communication speed between the PC and your drive/motor
and on the number of different variables that must be read from the drive/motor in order to be
displayed. In order to keep the update rate high, try to activate only those control panels, which
are needed at one moment. Thus you’ll avoid over-charging this process and slowing down too
much the update rate.

2. The display rate of the objects is individually selectable, at their definition (see next paragraphs,
the customization procedure of control panels)

Stopping the control panels of an application

Use the “Stop Control Panel” button or the “Control Panel | Stop” menu command in order to stop
the update of information on the control panels of the application.

Note that this command will delete all the information associated to that control panel. If you want to
preserve the control panel, use the “Control Panel | Export to File…” menu command, before deleting
the control panel. The delete operation acts only at the level of the application, but does not affect the
control panels saved on files.

Customizing a control panel

Use the “Control Panel | Customize” menu command in order to be able to customize a control panel. A
special toolbar will be displayed, containing all the possible objects, which can be added in a control
panel. You’ll be able to add, remove and parameterize all the objects of a control panel. Note that during
the parameterization stage, all the control panels are stopped. See the “Control Panel Objects”
paragraph for more details regarding the objects, which can be used in a control panel, and their
parameter setting.

Renaming a control panel

A name must be given to a control panel at the moment of its loading from an external file, or at its
creation. This name is displayed in the window bar of the panel. You can change this name using the
“Control Panel | Rename” menu command.

Note that this name is valid at the level of the application, and does not affect the name of the control
panel file that was eventually used to load the control panel into the application.

© ElectroCraft 2013 54 MPD User Manual

Saving a control panel

Use the “Control Panel | Export to File…” menu command in order to save a defined control panel on
an external file. This will allow you to load and use this control panel in a different application.

Deleting a control panel

Use the “Control Panel | Delete” menu command in order to delete the currently selected control panel
from the application.

Note that if you previously saved this control panel using the “Control Panel | Export to File…” menu
command, this command will only delete the control panel from the application, while the saved file will
remain unchanged. This will allow you to re-load the control panel again, using the “Control Panel | Add
Control Panel from file …” menu command.

In case that you didn’t saved the control panel, using the “Control Panel | Delete” menu command will
completely lose the information defined in it.

Control Panel Customization

A control panel can be freely defined and/or customized by you. Specific basic control panel templates
can be saved and included in other MotionPRO Developer applications, as preferred by you. When you
start creating a new control panel, using the “Control Panel | Add Control Panel” menu command, a
new, empty control panel window is opened. At the same time, the specific control panel objects toolbar
is also displayed. This toolbar is also displayed when you use the “Control Panel | Customize” menu
command.

While in the customization mode, all control panels are stopped and can be modified. Use again the
“Control Panel | Customize” menu command to end the customization and return in the normal
operation mode of the control panels.

Several types of visualization or setting objects can be included in a control panel, and positioned / sized
as preferred. Each object will be associated to one or more MPL variable(s) (for display-type objects) or
MPL parameter (for setting objects). Depending on their types, specific parameters can be defined.

Selecting objects in a control panel. Click on an object from the control panel in order to select it.
Press the left-mouse button and drag the mouse in order to select more objects simultaneously. Currently
selected object(s) are highlighted, and specific operations can be done related to them (see below).
Alternatively, press the CTRL key and click the left-button of the mouse in order to select one by one the
objects. Note that the LAST selected object is the dominant object, and alignments and resizing are
referred to it.

Editing an object in a control panel. Double-clicking an object, using the Control Panel | Edit Active

Item… menu command, or the corresponding icon , will open its specific parameterization dialog.
This dialogue is automatically opened when a new object is defined. See next paragraph for details
related to the parameterization of each type of control panel object.

Deleting an object in a control panel. Use the DEL key in order to delete the currently selected objects
from a control panel.

Duplicating objects in a control panel. Use the Control Panel | Duplicate Selected Items menu
command in order to create a copy of all the objects which are selected in that moment. The newly
created objects have the same characteristics and parameters as the original ones.

© ElectroCraft 2013 55 MPD User Manual

Moving objects in a control panel. Once one or more objects are selected in a control panel, drag them
by pressing the mouse left-button and moving the mouse. The objects will move all together, keeping the
same distance between them.

Aligning objects in a control panel. Use the “Control Panel | Align to …” menu command or the
corresponding icons, in order to align all the objects which are selected, at left, right, top or bottom. Note
that the reference position is taken from the LAST selected object in the currently selected objects. To
align objects:

• Select the objects you want to align by holding down the CTRL key and clicking the mouse’s left
button on the appropriate object window

• Make sure the correct dominant object (the last selected object) is selected.

• The final position of the group of objects depends on the position of the dominant object.

Use Align Left button from the toolbar to align the selected objects along their left side.

Use Align Right button from the toolbar to align the selected objects along their right side.

Use Align Top button from the toolbar to align the selected objects along their top edges.

Use Align Bottom button from the toolbar to align the selected objects along their bottom edges.

Spacing objects in a control panel. Use the Control Panel | Space evenly… menu command or the
corresponding icons, in order to equally space all the objects which are selected, horizontally (across) or
vertically (down). Note that the reference position is taken from the selected objects placed in the
extremes of the currently selected objects.

Choose Space Evenly Across button from the local toolbar to space objects evenly between the
leftmost and the rightmost control selected.

Choose Space Evenly Down button from the local toolbar to space objects evenly between the
topmost and the bottommost object selected.

Resizing objects in a control panel. You can manually resize an object by using the specific resize
mouse cursors and the mouse left-button. If more objects are selected, the Control Panel | Make
Same… menu commands or the corresponding icons, allows you to make the same width, height or size
(both width and height) for all these objects. Note that there are some limits when trying to resize some of
the objects. Note that the reference size is taken from the LAST selected object in the currently selected
objects.

Choose Make Same Size Width button from the local toolbar to size objects with the same width as
the dominant object;

Choose Make Same Size Height button from the local toolbar to size objects with the same height
as the dominant object;

Choose Make Same Size Both button from the local toolbar to size objects with both the same
height and the same width as the dominant object.

© ElectroCraft 2013 56 MPD User Manual

Superposing objects in a control panel. In order to create some special visual appearance effects, you
can totally or partially superpose objects in a control panel. In this case, it is important to control the
relative position of the objects. Use the Control Panel | Send to Back or Control Panel | Bring to Front
menu commands or the corresponding icons.

Choose Send to Back button from the local toolbar to send to back the selected items.

Choose Send to Back button from the local toolbar to send to front the selected items.

Control Panel Objects

This section contains the description of the different objects that can be defined in a control panel. In the
customization mode, you can freely add / remove objects to a control panel. Simply drag and drop an
object from the toolbar containing the object symbols, and place it on the control panel area. Objects are
user-resizable. For each of these objects, as already mentioned, there is associated a variable /
parameter, I/O port number or data memory location or an expression can be defined, to be
evaluated before being displayed. They can be selected at the moment when the control panel is defined.

A data memory location must be specified with the following format: type@address where type
represents the data type supported by MPL: integer, long or fixed and address is the memory location
address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are interpreted
as a fixed data.

The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an Expression are:

 variable_name [unit]

variable_name

type@address

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

Note that for all the objects used to display the value of a variable, the variable can be selected from the
current list of variables.

In the “Axis ID” edit field of each object, you can select the Axis ID of the axis from where the variable will
be read/set. This will allow you to visualize in one control panel variables from different drives / motors

© ElectroCraft 2013 57 MPD User Manual

connected into a network. The default axis ID is as set in Comm Setup e.g. the axis ID set in
Communication |Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the scroll list,
for a convenient representation depending on values range. Note that if the selected measurement unit is
“IU” (Internal Units), the decimals parameter is not used. Also for IU representations, hexadecimal format
can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title section.
By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

Value Object

Scope Object

Dual Chanel Scope Object

Y(X) Dual Chanel Scope Object

Gauge Object

Cursor Object

Input Port Viewer Object

Output Port Setting Tool Object

Viewer of a Bit of a Variable Object

User Defined MPL Sequence Object

Label Object

© ElectroCraft 2013 58 MPD User Manual

4.2.2. Control Panel - Show Value

 It’s used to visualize the value of one MPL variable or data memory contents.

In the Variable field select the desired one from the current list of variables or insert a memory location.

A data memory location must be specified with the following format: type@address where type
represents a data type supported by MPL: integer, long or fixed and address is the memory location
address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are interpreted
as a fixed data.

Select Expression to define a formula to be evaluated before being displayed. They can be selected at
the moment when the control panel is defined.

The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an expression are:

 variable_name [unit]

variable_name

number

© ElectroCraft 2013 59 MPD User Manual

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the variable will
be read/set. This will allow you to visualize in one control panel variables from different drives / motors
connected into a network. The default Axis ID is “as set in Comm Setup” e.g. the Axis ID selected in the
Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the scroll list,
for a convenient representation depending on values range. Note that if the selected measurement unit is
“IU” (Internal Units), the decimals parameter is not used. Also for IU representations, hexadecimal format
can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title section.
By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

Control Panel Utility

© ElectroCraft 2013 60 MPD User Manual

4.2.3. Control Panel - Scope

 It’s used to visualize one variable. Note that, because the update rate of these values is somehow
limited (depending on the communication speed between the PC and the drive, and on the functionality of
the Windows environment), the evolution of fast changing variables cannot be correctly visualized. You
cannot visualize AC currents or voltages, for example. Use this tool for slow varying or steady state
regime analysis. Otherwise, use the Logger utility.

…

In the Variable field select the desired one from the current list of variables or insert a memory location.

A data memory location must be specified with the following format: type@address where type
represents the data type supported by MPL: integer, long or fixed and address is the memory location
address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are interpreted
as a fixed data.

© ElectroCraft 2013 61 MPD User Manual

Select Expression to define a formula to be evaluated before being displayed. They can be selected at
the moment when the control panel is defined.

The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an expression are:

 variable_name [unit]

variable_name

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the variable will
be read/set. This will allow you to visualize in one control panel variables from different drives / motors
connected into a network. The default Axis ID is “as set in Comm Setup” e.g. the Axis ID selected in the
Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the scroll list,
for a convenient representation depending on values range. Note that if the selected measurement unit is
“IU” (Internal Units), the decimals parameter is not used. Also for IU representations, hexadecimal format
can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title section.
By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time period can be set in the “Time period” field.

See also:

The Control Panel Utility

© ElectroCraft 2013 62 MPD User Manual

4.2.4. Control Panel - Double Scope

 It’s used to visualize two variables on the same area. Note that, because the update rate of these
values is somehow limited (depending on the communication speed between the PC and the axis, and on
the functionality of the Windows environment), the evolution of fast changing variables cannot be
correctly visualized. You cannot visualize AC currents or voltages, for example. Use this tool for slow
varying or steady state regime analysis. Otherwise, use the Logger utility.

In the Variable field select the desired one from the current list of variables or insert a memory location.

A data memory location must be specified with the following format: type@address where type
represents the data type supported by MPL: integer, long or fixed and address is the memory location
address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are interpreted
as a fixed data.

Select Expression to define a formula to be evaluated before being displayed. They can be selected at
the moment when the control panel is defined.

The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

© ElectroCraft 2013 63 MPD User Manual

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an expression are:

 variable_name [unit]

variable_name

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the variable will
be read/set. This will allow you to visualize in one control panel variables from different drives / motors
connected into a network. The default Axis ID is “as set in Comm Setup” e.g. the Axis ID selected in the
Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the scroll list,
for a convenient representation depending on values range. Note that if the selected measurement unit is
“IU” (Internal Units), the decimals parameter is not used. Also for IU representations, hexadecimal format
can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title section.
By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time period can be set in the “Time period” field.

See also:

The Control Panel Utility

© ElectroCraft 2013 64 MPD User Manual

4.2.5. Control Panel - Y(X) Scope Object

 This object is similar to the Dual-channel scope (Double Scope Object) except that you visualize
one variable as function of another variable on the same area.

In the Variable field select the desired one from the current list of variables or insert a memory location.

A data memory location must be specified with the following format: type@address where type
represents the data type supported by MPL: integer, long or fixed and address is the memory location
address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are interpreted
as a fixed data.

Select Expression to define a formula to be evaluated before being displayed. They can be selected at
the moment when the control panel is defined.

The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an expression are:

 variable_name [unit]

variable_name

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

© ElectroCraft 2013 65 MPD User Manual

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the variable will
be read/set. This will allow you to visualize in one control panel variables from different drives / motors
connected into a network. The default Axis ID is “as set in Comm Setup” e.g. the Axis ID selected in the
Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the scroll list,
for a convenient representation depending on values range. Note that if the selected measurement unit is
“IU” (Internal Units), the decimals parameter is not used. Also for IU representations, hexadecimal format
can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title section.
By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time period can be set in the “Time period” field.

See also:

The Control Panel Utility

© ElectroCraft 2013 66 MPD User Manual

4.2.6. Control Panel - Gauge

Gauge is used to indicate the value of a variable and its variation in time

 Horizontal gauge: used to indicate the value of a variable and its variation in time. Disposed on
horizontal direction.

 Vertical gauge: used to indicate the value of a variable and its variation in time. Disposed on
vertical direction.

In the Variable field select the desired one from the current list of variables or insert a memory location.

A data memory location must be specified with the following format: type@address where type
represents the data type supported by MPL: integer, long or fixed and address is the memory location
address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are interpreted
as a fixed data.

Select Expression to define a formula to be evaluated before being displayed. They can be selected at
the moment when the control panel is defined.

© ElectroCraft 2013 67 MPD User Manual

The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an expression are:

 variable_name [unit]

variable_name

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the variable will
be read/set. This will allow you to visualize in one control panel variables from different drives / motors
connected into a network. The default Axis ID is “as set in Comm Setup” e.g. the Axis ID selected in the
Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the scroll list,
for a convenient representation depending on values range. Note that if the selected measurement unit is
“IU” (Internal Units), the decimals parameter is not used. Also for IU representations, hexadecimal format
can be selected.

In the Min and Max edit field you can specify the minimum and the maximum values you wish to
visualize.

The title of the object window (displayed in the object window title bar) can be specified in Title section.
By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

The Control Panel Utility

© ElectroCraft 2013 68 MPD User Manual

4.2.7. Control Panel - Slider

This cursor object is used to change the value of a parameter.

 Horizontal cursor: is disposed on horizontal direction.

 Vertical cursor: is disposed on vertical direction.

In the Variable field select the desired one from the current list of variables or insert a memory location.

A data memory location must be specified with the following format: type@address where type
represents a data type supported by MPL: int, long or fixed and address is the memory location address
expressed in hexadecimal form. Type is optional if it’s not specified data is interpreted as integer.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are interpreted
as a fixed data.

Select Expression to define a formula to be evaluated before being displayed. They can be selected at
the moment when the control panel is defined. The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

© ElectroCraft 2013 69 MPD User Manual

The operands used for editing of an expression are:

 variable_name [unit]

variable_name

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the variable will
be read/set. This will allow you to visualize in one control panel variables from different drives / motors
connected into a network. The default Axis ID is “as set in Comm Setup” e.g. the Axis ID selected in the
Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the scroll list,
for a convenient representation depending on values range. Note that if the selected measurement unit is
“IU” (Internal Units), the decimals parameter is not used. Also for IU representations, hexadecimal format
can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title section.
By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

The Control Panel Utility

© ElectroCraft 2013 70 MPD User Manual

4.2.8. Control Panel - Input

 It’s used to display the status of an input port.

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the variable will
be read/set. This will allow you to visualize in one control panel variables from different drives / motors
connected into a network. The default Axis ID is “as set in Comm Setup” e.g. the Axis ID selected in the
Communicate with field from Communication | Setup dialogue.

The input number (IN#) can be selected from the current list of input ports.

The title of the object window (displayed in the object window title bar) can be specified in Title section.
By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

The Control Panel Utility

© ElectroCraft 2013 71 MPD User Manual

4.2.9. Control Panel - Bit Value

 It’s used to display the status of a bit of one MPL variable or data memory contents.

The variable can be selected from the current list of variables.

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the variable will
be read/set. This will allow you to visualize in one control panel variables from different drives / motors
connected into a network. The default Axis ID is “as set in Comm Setup” e.g. the Axis ID selected in the
Communicate with field from Communication | Setup dialogue.

The bit number will be selected from Bit Position .

The title of the object window (displayed in the object window title bar) can be specified in Title section.
By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

The Control Panel Utility

© ElectroC

4

 It’

You can f
the Electr

See also:

The Contr

Craft 2013

.2.10. Contr

s a button ha

freely define t
roCraft drive.

rol Panel Utili

rol Panel - U

aving associat

these instruct

ty

72

User Define

ted a MPL ins

tions. Pressin

2

ed MPL Seq

structions seq

ng the button

quence Obje

quence, user-

will send the

MPD U

ect

-defined.

e associated M

User Manual

MPL commannds to

© ElectroCraft 2013 73 MPD User Manual

4.2.11. Control Panel - Label

 It’s an object defining a text or a color-filled rectangle.

Define a text the main edit field.

Choose the font attributes (type, color, size, etc.) by pressing the Font… button.

Check Border if you want that the text window to be bordered.

You can check Filled and choose the background color by pressing the Background Color….

Use such objects in order to create more specific control panels, with a better graphical appearance.

See also:

The Control Panel Utility

© ElectroCraft 2013 74 MPD User Manual

4.2.12. Control Panel - Output

 It’s used to set the status of an output port.

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the variable will
be read/set. This will allow you to visualize in one control panel variables from different drives / motors
connected into a network. The default Axis ID is “as set in Comm Setup” e.g. the Axis ID selected in the
Communicate with field from Communication | Setup dialogue.

The output number (OUT#) can be selected from the current list of output ports.

The title of the object window (displayed in the object window title bar) can be specified in Title section.
By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

The Control Panel Utility

© ElectroC

4

Use this d

4.3.

The Com
this tool to

You can o

selecting

In PROco
the drive/m

In Motion
axis numb

To find th
and pres
type@add

MPL> ?ap

APOS (lo

MPL>

Remark:
defined v
are acces

To set the

MPL> var

Craft 2013

.2.13. Contr

dialog to defin

Comman

mand Interp
o set/get MPL

open the Com

the associate

onfig the MP
motor selecte

nPRO Develo
ber of the sele

e value of a M
s the [Enter]
dress and its

pos<Enter>

ong@0x0228

Through this
variables you
ssible only aft

e value of a M

r_i1=0<Ent

rol Panel Pr

ne / change th

nd Interpre

preter allows
L data: registe

mmand Interp

ed toolbar icon

L commands
ed in Commu

oper, the MP
ected applica

MPL data, typ
] key. The c
value in decim

>

8) = 134575

s method you
create in an

ter you compi

MPL data, type

ter>

75

operties

he name of th

eter

you to send o
ers, paramete

reter using th

n .

s are sent to
nication | Se

L commands
tion.

pe in the que
command int
mal and hexa

54 (0x0014

u can find the
 MotionPRO
ile your applic

e its name fol

5

he current Con

on-line MPL c
ers and variab

he "View | Co

the drive/mot
etup to comm

are sent to t

estion mark ch
terpreter disp
adecimal form

488DA)

e type and ad
Developer a

cation.

lowed by equ

ntrol Panel.

commands to
bles or to disp

ommand Inte

tor for which
municate with.

the drive/moto

haracter "?" f
plays the MP

mat.

ddress of any
application. N

ual and the va

MPD U

o your drive/m
play memory

erpreter" men

the setup is
.

or with the sa

followed by th
PL data type

y MPL data, i
Note that user

alue, then pre

User Manual

motor. You ca
locations.

nu command,

performed. T

ame axis ID a

he MPL data
e and addres

including the
r-defined vari

ess the [Enter

an use

 or by

This is

as the

name
ss as

user-
riables

r] key.

© ElectroCraft 2013 76 MPD User Manual

With Command Interpreter you can also perform the following operations related with the drive/motor
EEPROM or RAM memory:

• Fill with a value all the MPL program memory locations between a start address and stop
address.

MPL>fillmemory 0x4000, 0x4010, 0xABCD<Enter>

MPL>

• Fill with a value all the MPL data memory locations between a start address and stop address.

MPL>filldatamemory 0x8000, 0x8010, 0x0101<Enter>

MPL>

• Set a MPL program memory location with specified value

MPL>setmemory 0x4000, 0x0001<Enter>

MPL>

• Set a MPL data memory location with specified value

MPL>setdatamemory 0x8000, 0x0001<Enter>

MPL>

• Show all the MPL program memory locations contents between a start address and stop
address

MPL>showmemory 0x4000, 0x4010<Enter>

4000: ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

4008: ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

4010: ABCD

MPL>

• Show all the MPL data memory locations contents between a start address and stop address

MPL>showdatamemory 0x8000, 0x8010<Enter>

8000: 0101 0101 0101 0101 0101 0101 0101 0101

8008: 0101 0101 0101 0101 0101 0101 0101 0101

8010: 0101

MPL>

Remarks:

• The Command Interpreter memory operations are intended mainly for test and debugging. Do
not use then for normal operation. Note that uncontrolled change of memory locations may lead
to unexpected results.

• For MPL program or data memory addresses ranges see Memory Map.

© ElectroCraft 2013 77 MPD User Manual

The Command Interpreter keeps a history with all commands sent. You can navigate between them with
arrow keys UP and DOWN and select one to execute again. When the Command Interpreter window is
closed the commands history is reset.

You can access the Command Interpreter menu, by clicking on the right button mouse inside its window.
The menu options are:

• Undo/Redo – reverses the last edit changes done on the current command line / reverses the
Undo action

• Cut/Copy/Paste – cuts selected text and puts it the on clipboard/copies selected text and puts it
in the clipboard/inserts text from clipboard at the insertion point in the command line

• Toggle Bookmark – activates/deactivates a bookmark at the insertion point. To navigate
between bookmarks use key F2.

See also:

Memory Map

© ElectroC

4.4.

The Bina
ElectroCra
communic
have to se

First selec
CAN-bus

At Sende
Host, as
MPLCAN
None, me
simulate t
None. If y
another a
for details

Remark:
the RS-48

At Destin
In the sec

In the ca
returned v
the positio

Craft 2013

Binary C

ry Code View
aft drive/moto
cation types a
end and the e

ct the commu
with ElectroC

er select the A
2 drives/mot
or ElectroCA

eans non-requ
these messa
you select M
xis, which in

s)

Though theo
85 where the

ation choose
cond case, se

se of query
value in hexa
on of the retu

Code Viewe

wer offers yo
or. Through t
and the supp
expected answ

unication Prot
CAN or no pr

Axis ID of the
tors may not

AN, the sende
uested messa

ages with a ?
PL, you can
the case of R

oretically poss
host must co

e either an Ax
elect a group f

messages a
adecimal form
rned data in t

78

er

ou a quick wa
his tool, you

ported protoco
wers from the

tocol betwee
rotocol, just th

e message s
t be connect
er can be an
ages sent by
?? query follo
find the bina

RS-232 plays

sible, activati
ntrol the com

xis of a Grou
from 1 to 8 or

sking the dri
mat in the Typ
the message

8

ay to program
can find how
ols. You get
e drive/motor,

en: serial RS 2
he binary code

ender. In the
ed between
Axis/Host (a
the drive/mot

owed by the
ary code for M

the role of an

ion of non-req
mmunication to

p of axes. In
r set group nu

ive/motor to
pe here (hexa

received.

m your host fo
w to encapsula

the both the
, if it is the ca

232, serial RS
e of the MPL

e case of RS-
them using

another Axis
tor, containin
returned MP

MPL comman
n Relay Axis

quested mes
o avoid conflic

the first case
umber to 0 for

return a MP
a) edit box. T

MPD U

or exchanging
ate a MPL co
contents of t

se.

S 485, CAN-b
 commands a

-232, the sen
RS-232. If yo
or your Host
g a specific M

PL data name
nds sent from
 (see Commu

ssages is not
cts.

e, set the axis
r a broadcast

PL data, you
This helps you

User Manual

g messages w
ommand for a
the message

bus with MPL
and answers.

der is always
ou select RS
t) or None. O
MPL data. Yo
e and by sele
m both the Ho
unication Prot

t recommende

s ID of the rec
t message.

can introduc
u to quickly id

with a
all the

es you

LCAN,

s your
S-485,
Option
ou can
ecting
ost or
tocols

ed for

ceiver.

ce the
dentify

© ElectroCraft 2013 79 MPD User Manual

You can simulate 2 types of query or Type B messages (see Communication Protocols for details):

• A “GiveMeData: request, by typing at Source Code a question mark ? followed by a MPL data name
(for example ?apos to read the actual position). In this case the answer is a “TakeData” message

• A “GiveMeData2” request, by typing at Source Code a double question mark ?? followed by a MPL
data name (for example ??aspd to read the actual speed). In this case the answer is a “TakeData2”
message

On CAN-bus, a “GiveMeData2” request may be sent to a group of drives/motors. For the returned answer
you can Select an axis from the group.

Remarks:

• If a “GiveMeData2” request is sent to a group, the “TakeData2” answers are prioritized function of the
respondents’ axis ID: the drive/motor with the lowest axis ID has the highest priority.

• The “GiveMeData” request is intended only for a single axis. If in a CAN-bus network, “GiveMeData” is
sent to a group, all the returned answers have the same CAN identifier and therefore can’t be
differentiated, causing an error.

• On RS-485, the query messages can’t be sent to group, as the answers will overlap.

For simulating Type A messages, which do not request to return a data, simply type the MPL instruction
at Source code. For example to set a position command CPOS of 2000 encoder counts, type
cpos=2000.

After you have introduced one or more commands, press to arrow button “>” to generate the code.

At Binary code sent you’ll see the binary code (in hexadecimal format), which must be sent by your host.
When RS-232 and RS-485 are selected, the code displayed represents the bytes you have to send via
the serial asynchronous port of your host. When MPLCAN is used, the first 8 hexadecimal numbers
represent the 29-bit identifier of the CAN message (the 3MSB of the 32-bit value are zero) and the
remaining bytes represent, the CAN message data: byte 0, byte 1, etc. When ElectroCAN protocol is
chosen, the first 3 hexadecimal numbers represents the 11-bit identifier of the CAN message (the MSB of
the 12-bit value is zero).

At Binary code received you’ll see the answer sent by the drive/motor.

Remark: On RS-232 and RS-485 each message sent to one axis is confirmed with an acknowledge byte
4Fh. Therefore, in a query message, you’ll see first the 4Fh byte as confirmation for the reception of the
data request, followed by the contents of the answer message. On RS-485, the 4Fh acknowledge byte is
not sent if the command is sent to a group.

See also:

Communication protocols

© ElectroC

4.5.

In Memor
where the

The windo
can refres

Remark:
without a
intend to m

See also:

Memory S

Craft 2013

Memory

ry window yo
e MPL progra

ow is opened
sh the display

As this featu
deep knowle
modify

Settings

y View

ou can view/
m runs.

d selecting the
yed data by se

re is a very lo
edge of the us

80

modify the co

e View | Mem
electing the m

ow level func
se made by t

0

ontents of th

mory menu co
menu comman

ction, it is NO
the ElectroCra

e ElectroCra

ommand or th
nd View | Re

T recommend
raft drive/moto

MPD U

aft drive’s/mot

he associated
efresh button

ded to modify
or of each me

User Manual

tor’s memory

d toolbar icon
or F12 key.

y memory con
emory locatio

y from

n. You

ntents
on you

© ElectroC

5. Com

5.1.

The comm
serial port
between y
RS-485,
exception
communic
CAN-bus

Remark:
compatibi

When sev
communic
drive/moto
Protocol
(CAN2.0A

Remark:
IDs, of the

Through t
Axis ID o
communic
you have

Craft 2013

mmunicat

Commun

munication s
t or a commu
your PC and
CAN-bus or
 of the RS
cation setting
interfaces su

 If your PC
ility with one o

veral drives/m
cation protoc
or connected
you can cho

A, 11-bit iden

When the C
e drives/moto

this dialogue
of the drive/m
cation setting
set are resto

tion

nication Se

ettings from
unication inter
 your Electro

r Ethernet a
S-232, all th
gs depend on
pported.

is equipped
of the interfac

motors are c
col used. This
 to the host a

oose either M
ntifier).

CANopen or E
ors and of the

you also spe
motor connec
s are saved.
red.

81

etup

this dialogue
rface board. T
oCraft drives/
and setup in
e other opt

n the interface

d with anothe
ces supported

connected in
s option is a
acts as retran

MPLCAN (CA

ElectroCAN (
PC, are inter

cify the Axis
cted with you

Next time wh

1

e define how
The dialogue
/motors. You
 each case

tions require
e used. There

er CAN-bus i
d

a CAN-bus
lso available
nsmission rel

AN 2.0B, 29-b

(CAN2.0A, 11
rpreted as mo

IDs for your
r PC. Each

hen you open

w MotionPRO
allows you to
can choose
the commu

 a specific
efore the Cha

interface, con

network you
 for serial R
ay (see Com
bit identifier

1-bit identifier
odulo 32.

PC or in the
time you clo

n the MotionP

MPD U

O Developer
o select the co

between: se
nication para
interface. F

annel Type l

ntact Electro

 have to spe
S-232 and E

mmunication P
r) or CANope

r) protocol is

case of RS-2
ose MotionPR
PRO Develope

User Manual

is using you
ommunication

erial RS-232,
ameters. Wit
For CAN-bus
list includes a

Craft to chec

ecify the CAN
Ethernet, whe
Protocols). At
en or Electro

selected the

232 or Ethern
RO Develope
er, the last se

ur PC
n type
serial

th the
s, the
all the

ck for

N-bus
en the
t CAN
oCAN

e Axis

et the
er, the
ettings

© ElectroCraft 2013 82 MPD User Manual

Important Note:

Only a part of the ElectroCraft products supports all communication types. Make sure you select a
communication type supported by your product!

Remark: If you get a communication error message, select “Communication | Refresh” command or
press the associated button from the toolbar to restore the communication.

Note that when using serial RS-232 or RS-485 communication, MotionPRO Developer automatically sets
the drives/motors with the baud rate selected in this dialogue. If a drive/motor is reset (power supply is
temporary turned off), the serial communication with your PC may no longer work. This happens if the
drive/motor default baud rate after reset (9600 baud) differs from that set in MotionPRO Developer. Use
“Communication | Refresh” command to restore the communication. This starts the automatic baud rate
detection, followed by the baud rate change to the value set in MotionPRO Developer.

See also:

RS-232 Communication Setup

RS-232 Communication Troubleshoots

RS-485 Communication Setup

RS-485 Communication Troubleshoots

CAN-bus Communication Setup

CAN-bus Communication Troubleshoots

Ethernet Communication Setup

Ethernet Communication Troubleshoots

User Implemented Serial Driver Setup

User Implemented Serial Driver Troubleshoots

Advanced Communication Setup

© ElectroC

5

Steps to

1. Setup

2. Set M

Step 1 Se

1. Powe

2. In or
drive
conn
(e.g.

3. If the
joint)

4. Powe

Step 2 Se

1. Selec

2. Selec

3. Selec
drive
can c
11bit

4. Selec
the s

5. Selec

6. Set th
Motio
your
drive

a. W

b. If

Craft 2013

.1.1. RS-23

o follow:

p the drive/m

MotionPRO D

etup the driv

er-Off your dr

rder to use t
/motor throug
ector for seri
one-to-one),

e drive/motor
 to the positio

er-On the driv

et MotionPRO

ct menu comm

ct at “Channe

ct the “CAN
/motor conne
choose either
t identifier).

ct at “Port” t
elected port i

ct the desired

he “Axis ID o
onPRO Deve
drive/motor d
s/motors axis

With the value

the setup tab

32 Commun

otor for RS-2

Developer for c

ve/motor for R

rive/motor

he RS-232 c
gh an RS-232
ial communic
else check th

supports als
on RS-232.

ve/motor

O Developer

mand “Comm

el Type” RS-2

Protocol” b
ected to PC a
r MPLCAN (C

the serial por
s COM1

d baud rate fro

of the drive/m
loper to detec
doesn’t suppo
s ID is set at p

read from the

ble is invalid, w

83

nication Set

32 communic

communicatio

RS-232 comm

communicatio
2 serial cable
cation, use a
he drive/moto

so RS-485 co

r for commun

munication | S

232 (default).

between the
acting as a re
CAN2.0B, 29

rt of your PC

om “Baud Ra

motor connec
ct automatica
ort this featur
power on usin

e EEPROM s

with the last a

3

up

cation

on via RS-232

munication

on, you need
. If the drive/m
9-wire stand

or user manua

ommunication

nication via R

Setup”

drives/motor
etransmission
9-bit identifie

, where you

ate” list

cted to PC”.
ally the axis ID
re (see remar
ng the followin

setup table co

axis ID value

2 with the driv

d to connect
motor is equip
ard serial ca

al for cable co

n, set the RS

RS-232 with

rs connected
n relay (see C
er) or CANop

have connec

The default o
D of the drive
rk below) sele
ng algorithm:

ontaining all th

read from a v

MPD U

ve/motor

your PC wit
pped with a s

able: male-fem
onnections.

S-232/RS-485

the drive/mo

 in the CAN
Communicatio
pen or Electr

cted the seria

option is auto
e connected t
ect its axis ID

he setup data

valid setup ta

User Manual

th the Electro
standard 9-pin
male, non-inv

 switch (or s

otor

N-bus network
on Protocols)
roCAN (CAN

al cable. By d

odetected ena
to the serial p
D from the list

a

ble

oCraft
n DB9
verting

older-

k, the
). You

N2.0A,

default

abling
port. If
t. The

© ElectroCraft 2013 84 MPD User Manual

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default axis ID
value which is 255.

Remark: When the ElectroCAN communication protocol is used the Axis IDs, of the drives/motors
and of the PC, are interpreted as modulo 32.

7. Press the OK button

If the communication works properly, you’ll see displayed on the status bar (the bottom line) of the
MotionPRO Developer the text “Online”, the axis ID of the drive/motor and the firmware version read from
the drive/motor.

Remark: If your drive/motor firmware number:

• Starts with 1 – examples: F100A, F125C, F150G, etc., or

• Starts with 0 or 9 and has a revision letter below H – examples: F000F, F005D, F900C

you can’t use the axis ID autodetected option.

See also:

RS-232 Communication Troubleshoots

Advanced Communication Setup

Communication Setup

© ElectroCraft 2013 85 MPD User Manual

5.1.2. RS-232 Communication Troubleshoots

If the serial RS232 communication does not operate properly, MotionPRO Developer will issue an error
message and you’ll see displayed on the status bar (the bottom line) of the MotionPRO Developer the
text “Offline”.

1. If the error message is “Cannot open the selected serial port”, the serial port you have selected
from “Port” does not exist or is used by another device of your PC (mouse, modem, etc.). Click
“Cancel”, reopen Communication | Setup dialogue, select another serial port and try again.

2. If the error message is “Cannot synchronize the computer and drive/motor baud rates” click
“Cancel”, then check the following:

• Serial cable connections

• Serial cable type, if you use a standard cable. Make sure that the cable is non-inverting (one-to-
one)

• In “Communication | Setup” dialogue, the “Axis ID of the drive/motor connected to PC is”
selection. If you use MotionPRO Developer with a previously bought drive/motor, this may not
support the default option “autodetected”. Select the same axis ID with that of your drive/motor.
The drives/motors axis ID is set at power on using the following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default axis
ID value which is 255.

• Drive hardware settings for RS-232 communication (see RS-232 Setup)

3. If the communication operates usually but gives communication errors from time to time, check the
following:

• If your PC has an earth connection.

• If your drive/motor is linked to earth. For the drives/motors without an explicit earth point,
connect the earth to the ground of the supply/supplies.

• In “Communication | Setup” dialogue click on the Advanced… button and increase the “Read
interval timeout”, “Timeout multiplier” and “Timeout constant” parameters. Note that these
parameters are related to PC serial operation and usually the default values for these
parameters do not need to be modified.

After you fix the problem, execute menu command “Communication | Refresh” to restore the
communication.

See also:

RS-232 Communication Setup

Advanced Communication Setup

Communication Setup

© ElectroCraft 2013 86 MPD User Manual

5.1.3. CAN-bus Communication Setup

Steps to follow:

1. Setup the drives/motors for CAN-bus communication

2. Mount on/connect to your PC a CAN-bus interface board

3. Install on your PC an CAN-bus software driver

4. Build the CAN-bus network

5. Set MotionPRO Developer for communication via CAN-bus with the drives/motors

Step 1. Setup the drives/motors for CAN-bus communication

1. Power-Off the drive/motor

2. Choose a different axis ID for each drive/motor and also different from the axis ID of PC (which is set
by default at 255). The drives/motors axis ID is set at power on using the following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default axis ID
value which is 255.

Remarks:

• If your drive/motor has no hardware switches/jumpers for axis ID setting, you must program the
desired axis ID in the drive/motor setup table. You can do this operation from MotionPRO
Developer – the setup part of an application, where you can select the axis ID to be saved in the
drive/motor setup table from the EEPROM. Use the RS-232 communication to download the
setup data.

• When the ElectroCAN communication protocol is used the Axis IDs, of the drives/motors and of
the PC, are interpreted as modulo 32.

Step 2. Mount on your PC a CAN-bus interface board

MotionPRO Developer offers the possibility to choose one of the following PC to CAN-bus interfaces:

• IxxAT PC to CAN interface

• Sys Tec USB to CAN interface

• ESD PC to CAN interface

• LAWICEL CANUSB interface

• PEAK System PCAN-PCI interface

• PEAK System PCAN-ISA

• PEAK System PC/104

• PEAK System PCAN-USB

• PEAK System Dongle interfaces

© ElectroC

o

o

o

Step 3. In

In order t
interface.
guidelines
following
electronic

Remarks
the folder

Step 4. B

Each drive

Step 5. S

1. Selec

2. Selec
interfa
Devic

3. Selec
CAN-
Elect

4. Depe
the de

Rema
numb

5. Selec

Rema
the C
drives

6. Selec
Make

Craft 2013

Dongle us

Dongle wit

Dongle Pro

nstall on you

o use a CAN
For each C

s. You can fin
web pages:

cs.com and ww

: For the CA
r where Motion

Build the CAN

e/motor manu

et MotionPR

ct menu comm

ct at “Channe
ace, PEAK
ce…” button t

ct the “CAN P
bus network.
roCAN (CAN

nding on the
evice where y

ark: For Sys
ber set with th

ct the CAN-bu

ark: The baud
CAN baud rat
s/motors is 50

ct at “Axis ID
 sure that all

ing SPP/EPP

th SJA chipse

o with SJA ch

ur PC a CAN-

N-bus interfac
CAN-bus inte
nd detailed in
 www.ixxat.c
ww.canusb.c

N-bus interfa
nPRO Develo

N-bus networ

ual shows how

RO Developer

mand “Comm

el Type” the C
PCAN-ISA, P
to choose the

Protocol” use
. You can ch

N2.0A, 11bit i

CAN-bus inte
you have conn

Tec USB to
e device conf

us interface ba

d rate selectio
te on the dri
00kbps.

of PC is” an
the drives/m

87

P protocol

et using SPP/

hipset using S

BUS softwar

ce you need t
rface, the pr

nformation reg
com, www.sy
om (Lawicel i

aces from PEA
oper was inst

rk

w to do the co

r for commu

munication | S

CAN-bus opti
PCAN-PC/10
 hardware mo

ed by the PC
hoose either
dentifier).

erface used, y
nected the CA

o CAN interf
figuration utili

aud rate from

on refers ONL
ives/motors.

 address for t
otors from th

7

/EPP protocol

SPP/EPP prot

re driver

to install on y
roducer prov
garding the a
ystec-electron
interface).

AK System y
talled.

onnections in

unication via

Setup”

ion correspon
04 and PEA
odel correspo

to communic
MPLCAN (C

you have mo
AN-bus

face the port
ity.

m “Baud Rate”

LY to the CAN
The default b

the PC. By de
e network ha

l

tocol

your PC the
vides the driv
above interfac
nic.de, www.

you must cop

n order to buil

CAN-bus wi

nding to your
K PCAN-Do
onding to you

cate with the
AN2.0B, 29-

ore or less po

number mus

” drop list

N-bus interfa
baud rate on

efault the val
ave a differen

MPD U

CAN-bus driv
ver as well
ces and their
.peak-system

py the DLL int

d a CAN-bus

ith the drives

r interface. Fo
ngle interfac
r device.

drives/motor
-bit identifier

rts available.

st be the sam

ce on the PC
n CAN-bus fo

ue proposed
t address. W

User Manual

ver for the ch
as the insta

r installation o
m.com, www

terface provid

s network.

s/motors

or IXXAT CAN
ces press “S

rs connected
r) or CANop

Select from “

me with the d

C. It doesn’t ch
or the Electro

is 255. Atten
When the CAN

hosen
llation
on the
w.esd-

ded in

N-bus
Select

in the
en or

“Port”

device

hange
oCraft

ntion!
Nopen

© ElectroCraft 2013 88 MPD User Manual

or ElectroCAN communication protocol is used the Axis IDs of the drives/motors and of the PC are
interpreted as modulo 32.

7. Press the OK button

If the CAN interface mounted on the PC works properly, you’ll see displayed on the status bar (the bottom
line) of the MotionPRO Developer the text “Online” and the axis ID of the PC.

See also:

CAN-bus Communication Troubleshoots

Advanced Communication Setup

Communication Setup

© ElectroCraft 2013 89 MPD User Manual

5.1.4. CAN-bus Communication Troubleshoots

If the CAN-bus communication does not operate properly, MotionPRO Developer will issue an error
message and you’ll see displayed on the status bar (the bottom line) of the MotionPRO Developer the
text “Offline”.

1. If the error message is “Cannot find board with selected Axis ID”, click “Cancel” button, then
check the following:

• CAN Baud rate selected in the Communication | Setup dialogue for the CAN-bus interface. It
should be the same with the drives/motors baud rate, which is set by default at power on at
500kbps.

• CAN-bus cable connections and the presence of the 120 ohms terminal resistors at the two ends
of the network

• If the CAN-bus supply is on

• In MotionPRO Developer project, the “Axis Number” of the selected application. This should
match with the Axis ID of one of the drives from the network. As e general rule, the axis number
of each application must correspond with the axis ID of one drive from the network. Each drive
must have a different axis ID. No drive can have the same axis ID value as that set as Axis ID of
PC.

• The setup of the CAN-bus interface on your PC

• Drive/motor hardware settings for CAN-bus communication (see CAN-bus Setup)

2. If the error message is “Cannot load interface with PEAK SYS xxxx devices (PCAN_XXXX.DLL)”,
click “Cancel” button, and then copy the file “PCAN_XXXX.DLL” from the Peak System CD (or other
storage media) in the folder where MotionPRO Developer was installed.

3. If the error message is “Invalid Parameter”, click “Cancel” and check the CAN-bus interface
selected in the Communication | Setup dialogue. This message occurs when the selected interface
is not installed and/or configured on your PC.

4. If the communication operates usually but gives communication errors from time to time, in
“Communication | Setup” click on Advanced… button and increase the Send message timeout
(when present) and Receive message timeout parameters. Note that for these parameters, usually,
the default values do not need to be modified.

After you fix the problem, execute menu command “Communication | Refresh” to restore the
communication.

See also:

CAN-bus Communication Setup

Advanced Communication Setup

Communication Setup

© ElectroCraft 2013 90 MPD User Manual

5.1.5. User implemented serial driver example

// Defines the entry point for the DLL application.

// Make sure that shdata is a shared section (e.g. for Microsoft linker you
should use: /SECTION:shdata,RWS)

// This way the s_nInstances variable will be globally visible to all
applications using this DLL

#pragma data_seg("shdata")

static int s_nInstances = 0;

#pragma data_seg()

HANDLE g_hSerialPort = INVALID_HANDLE_VALUE;

DWORD g_nBaudRate = 0;

BOOL APIENTRY DllMain(HANDLE /*hModule*/,

 DWORD ul_reason_for_call,

 LPVOID /*lpReserved*/

)

{

 switch (ul_reason_for_call)

 case DLL_PROCESS_ATTACH:

 if (s_nInstances == 0)

 g_hSerialPort = CreateFile("COM1", GENERIC_READ |
GENERIC_WRITE,

 0, // exclusive access

 NULL, // no security attrs

 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 NULL);

 if (g_hSerialPort == INVALID_HANDLE_VALUE)

 return false;

© ElectroCraft 2013 91 MPD User Manual

 //Initialize serial parameters

 DCB dcb;

 if (!GetCommState(g_hSerialPort, &dcb))

 return false;

 dcb.BaudRate = g_nBaudRate = CBR_9600;

 dcb.ByteSize = 8;

 dcb.Parity = NOPARITY;

 dcb.StopBits = TWOSTOPBITS;

 // Standard flow control

 // setup no hardware flow control

 dcb.fOutxDsrFlow = 0;

 dcb.fDtrControl = DTR_CONTROL_DISABLE;

 dcb.fOutxCtsFlow = 0;

 dcb.fRtsControl = RTS_CONTROL_DISABLE;

 dcb.fDsrSensitivity = false;

 // setup no software flow control

 dcb.fInX = dcb.fOutX = 0;

 dcb.fBinary = true ;

 if (!SetCommState(g_hSerialPort, &dcb))

 return false;

 //Set serial timeouts. ReadData and WriteData must
return

 //in a determined period of time

 COMMTIMEOUTS CommTimeOuts;

 CommTimeOuts.ReadIntervalTimeout = 1000;

 CommTimeOuts.WriteTotalTimeoutMultiplier =
CommTimeOuts.ReadTotalTimeoutMultiplier = 700 ;

 CommTimeOuts.WriteTotalTimeoutConstant =
CommTimeOuts.ReadTotalTimeoutConstant = 500 ;

 if(!SetCommTimeouts(g_hSerialPort, &CommTimeOuts))

 return false;

 }

 else

 //This library does not support connection sharing
between applications

© ElectroCraft 2013 92 MPD User Manual

 //If you need it, you must duplicate file handler from
one process to another

 return false;

 }

 s_nInstances++;

 break;

 case DLL_THREAD_ATTACH:

 case DLL_THREAD_DETACH:

 break;

 case DLL_PROCESS_DETACH:

 s_nInstances--;

 if (s_nInstances == 0)

 CloseHandle(g_hSerialPort);

 g_hSerialPort = INVALID_HANDLE_VALUE;

 }

 break;

 }

 return true;

}

//must have a timeout

bool __stdcall ReadData(BYTE* pData, DWORD dwBufSize, DWORD* pdwBytesRead)

 return ReadFile(g_hSerialPort, pData, dwBufSize, pdwBytesRead, NULL) ?
true : false;

}

//must have a timeout

bool __stdcall WriteData(const BYTE* pData, DWORD dwBufSize, DWORD*
pdwBytesWritten)

 return WriteFile(g_hSerialPort, pData, dwBufSize, pdwBytesWritten, NULL)
? true : false;

}

int __stdcall GetBytesCountInQueue() // should be non-blocking, < 0 means
error

 COMSTAT comStat;

© ElectroCraft 2013 93 MPD User Manual

 DWORD dwComErrors;

 if (!ClearCommError(g_hSerialPort, &dwComErrors, &comStat))

 return -1;

 return comStat.cbInQue;

}

void __stdcall PurgeQueues()

 PurgeComm(g_hSerialPort, PURGE_TXABORT | PURGE_RXABORT | PURGE_TXCLEAR |
PURGE_RXCLEAR);

}

DWORD __stdcall GetCommBaudRate()

 return g_nBaudRate;

}

bool __stdcall SetCommBaudRate(DWORD nNewBaudRate)

 if(nNewBaudRate != g_nBaudRate)

 DCB dcb;

 if (!GetCommState(g_hSerialPort, &dcb))

 return false;

 dcb.BaudRate = g_nBaudRate = nNewBaudRate;

 if (!SetCommState(g_hSerialPort, &dcb))

 return false;

 }

 return true;

}

© ElectroCraft 2013 94 MPD User Manual

5.1.6. User Implemented Serial Driver Setup

Steps to follow:

1. Implement the serial driver accordingly with the MPLcomm.dll interface

2. Setup the drive/motor for RS-232 communication

3. Set MotionPRO Developer for communication via user implemented serial driver with the drive/motor

Step 1 Implement the serial driver

 In the main function of the dll initialize the communication channel with the serial settings
implemented on the ElectroCraft drives/motors: 8 data bits, 2 stop bits, no parity, no flow control
and one of the following baud rates: 9600 (default after reset), 19200, 38400, 56600 and 115200.

 Implement the functions for interfacing your communication driver with MPLcomm. This functions
are:

bool __stdcall ReadData(BYTE* pData, DWORD dwBufSize, DWORD* pdwBytesRead)

bool __stdcall WriteData(const BYTE* pData, DWORD dwBufSize, DWORD*
pdwBytesWritten)

int __stdcall GetBytesCountInQueue()

void __stdcall PurgeQueues()

DWORD __stdcall GetCommBaudRate()

bool __stdcall SetCommBaudRate(DWORD nNewBaudRate)

where:

pData Pointer to buffer from/to the data is read/wrote

dwBufsize Parameter specifying the number of bytes to be read/write from/to serial
port

pdwBytesRead Pointer to the variable that contains the number of bytes read

pdwBytesWritten Pointer to the variable that contains the number of bytes written

nNewBaudRate Variable that contains the new value for serial baud rate

 Export the functions from the communication driver using a module-definition (.DEF) file with
the following content:

LIBRARY "virtRS232"

DESCRIPTION 'Example of a virtual serial driver for MPLcomm.dll'

EXPORTS

; Explicit exports can go here

ReadData

WriteData

© ElectroC

GetBy

Purge

GetCo

SetCo

Step 2 Se

1. P

2. In
dr
D
in

3. If
so

4. P

Step 3 Se
drive/mo

1. S

2. S

3. S
dr
Y
(C

4. S

5. S

6. S
en
se
fr

Craft 2013

ytesCountI

eQueues

ommBaudRat

ommBaudRat

etup the driv

ower-Off you

n order to use
rive/motor thr

DB9 connecto
nverting (e.g.

the drive/m
older-joint) to

ower-On the

et MotionPR
tor

elect menu c

elect User im

elect the “CA
rive/motor co

You can choo
CAN2.0A, 11

pecify at “Po

elect the des

et the “Axis
nabling Motio
erial port. If y
om the list. T

a. With the

b. If the setu

c. If there i
switches/

InQueue

te

te

ve/motor for R

r drive/motor

e the RS-232
rough an RS-

or for serial co
one-to-one),

otor supports
the position

drive/motor

RO Develope

ommand “Co

mplemented se

AN Protocol”
onnected to P
ose either M
bit identifier)

ort” the comm

ired baud rate

ID of the d
onPRO Devel
your drive/mo
he drives/mo

value read fro

up table is inv

s no axis ID
/jumpers for a

95

RS-232 comm

2 communica
-232 serial ca
ommunication
else check th

s also RS-4
RS-232.

er for commu

ommunicatio

erial driver at

” between th
PC acting as
PLCAN (CA
).

munication dll

e from “Baud

drive/motor c
loper to detec

otor doesn’t s
tors axis ID is

om the EEPR

valid, with the

D set by a va
axis ID setting

5

munication

ation, you nee
able. If the dr
n, use a 9-wi
he drive/motor

85 communi

unication via

n | Setup”

“Channel Ty

e drives/moto
a retransmis

N2.0B, 29-bi

you impleme

d Rate” list

connected to
ct automatica

support this fe
s set at powe

ROM setup tab

e last axis ID v

alid setup tab
g

ed to connec
rive/motor is
ire standard
r user manua

ication, set t

a user imple

ype”.

ors connecte
ssion relay (s
it identifier)

ented

o PC”. The d
ally the axis I
eature (see r
r on using the

ble containing

value read fro

ble, with the

MPD U

ct your PC wi
equipped wit
serial cable:

al for cable co

the RS-232/R

emented seri

ed in the CAN
see Commun

or CANope

default option
D of the drive

remark below
e following alg

g all the setup

om a valid set

value read f

User Manual

th the Electro
h a standard
male-female,

onnections.

RS-485 switc

ial driver wit

N-bus networ
nication Proto
en or Electro

n is autodete
e connected

w) select its ax
gorithm:

p data

tup table

from the hard

oCraft
 9-pin
, non-

ch (or

th the

rk, the
ocols).
oCAN

ected
to the
xis ID

dware

© ElectroCraft 2013 96 MPD User Manual

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default axis
ID value which is 255.

Remark: When the ElectroCAN communication protocol is used the Axis IDs, of the drives/motors
and of the PC, are interpreted as modulo 32.

7. Press the OK button

If the communication works properly, you’ll see displayed on the status bar (the bottom line) of the
MotionPRO Developer the text “Online”, the axis ID of the drive/motor and the firmware version read from
the drive/motor.

Remark: If your drive/motor firmware number:

• Starts with 1 – examples: F100A, F125C, F150G, etc., or

• Starts with 0 or 9 and has a revision letter below H – examples: F000F, F005D, F900C

you can’t use the axis ID autodetected option.

See also:

User Implemented Serial Driver Example

User Implemented Serial Driver Troubleshoots

Advanced Communication Setup

Communication Setup

© ElectroCraft 2013 97 MPD User Manual

5.1.7. User Implemented Serial Driver Troubleshoots

If the serial communication does not operate properly, MotionPRO Developer will issue an error message
and you’ll see displayed on the status bar (the bottom line) of the MotionPRO Developer the text
“Offline”.

1. If the error message is “The specified module could not be found”, the serial driver you have
specified at “Port” does not exist or its path is not properly set. Click “Cancel”, reopen
Communication | Setup dialogue, check your environment variables and try again.

2. If the error message is “Cannot synchronize the computer and drive/motor baud rates” click
“Cancel”, then check the following:

• Serial cable connections

• Serial cable type, if you use a standard cable. Make sure that the cable is non-inverting (one-to-
one)

• In “Communication | Setup” dialogue, the “Axis ID of the drive/motor connected to PC is”
selection. If you use MotionPRO Developer with a previously bought drive/motor, this may not
support the default option “autodetected”. Select the same axis ID with that of your drive/motor.
The drives/motors axis ID is set at power on using the following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default axis
ID value which is 255.

• Drive hardware settings for RS-232 communication (see User Implemented Serial Driver Setup)

3. If the communication operates usually but gives communication errors from time to time, check the
following:

• If your PC has an earth connection.

• If your drive/motor is linked to earth. For the drives/motors without an explicit earth point,
connect the earth to the ground of the supply/supplies.

• In “Communication | Setup” dialogue click on the Advanced… button and increase the “Read
interval timeout”, “Timeout multiplier” and “Timeout constant” parameters. Note that these
parameters are related to PC serial operation and usually the default values for these
parameters do not need to be modified.

After you fix the problem, execute menu command “Communication | Refresh” to restore the
communication.

See also:

User Implemented Serial Driver Setup

Advanced Communication Setup

Communication Setup

© ElectroCraft 2013 98 MPD User Manual

5.1.8. Advanced Communication Setup

The advanced communication parameters are related to the host/PC operation. Usually, the default
values for these parameters do not need to be modified. You may try to increase these parameters only if
the communication works but gives errors from time to time and you have already eliminated all the other
possible sources of errors.

When RS-232 or RS-485 communication is used, the dialogue displayed is

and the parameters have the following significance:

• Read Interval Timeout – specifies the maximum time, in milliseconds, allowed to elapse between the
arrival of two characters on the communications line. During a read operation, the time period begins
when the first character is received. If the interval between the arrivals of any two characters exceeds
this amount, the read operation is completed and any buffered data is returned. A value of zero
indicates that interval time-outs are not used.

• Timeout Multiplier – specifies the multiplier, in milliseconds, used to calculate the total time-out
period for read operations. For each read operation, the requested number of bytes to be read
multiplies this value.

• Timeout Constant – specifies the constant, in milliseconds, used to calculate the total time-out period
for read operations. For each read operation, this value is added to the product of the Timeout
Multiplier member and the requested number of bytes.

Remark: A value of zero for both the Timeout Multiplier and the Timeout Constant members indicates
that total time-outs are not used for read operations.

• Wait after RUN – specifies the time interval, in milliseconds, during which the MotionPRO Developer
will not communicate with a drive/motor, after it sends it a Run command from MotionPRO Developer.

The default values are: Read interval timeout – 1000 ms, Timeout multiplier – 700 ms, Timeout
constant – 400 ms, Wait after RUN – 0 ms.

When CAN-bus communication is used, the dialogue displayed is

© ElectroCraft 2013 99 MPD User Manual

and the parameters have the same significance:

• Send message timeout – specifies the maximum time interval, in milliseconds allowed to send a
message. If this time interval elapses without sending the message PROconfig/MotionPRO
Developer will issue a communication error message. This parameter is available for IxxAT and ESD
PC to CAN interfaces.

• Receive message timeout – specifies the maximum time, expressed in milliseconds, allowed for an
expected message to be received. If this interval elapses without receiving the message
PROconfig/MotionPRO Developer will issue a communication error message.

• Wait after RUN – same as for RS-232/RS-485

The default values are: Send message timeout – 700 ms, Receive message timeout – 700 ms, Wait
after RUN – 0 ms.

When Ethernet communication is used, the dialogue displayed is

and the parameters significance is similar with the serial RS-232 case.

The default values are: Read interval timeout – 700 ms, Wait after RUN – 0 ms.

Additional communication settings can be added directly in the configuration file kernel.cfg, from the
folder where PROconfig/MotionPRO Developer is installed. The following options can be added:

• SYNCHRONIZATION_SLEEP_MULTIPLIER – this parameter is multiplied with the time interval
required for synchronization character to be received via RS-232/RS-485. Possible values for the
parameter: between 2 and 2000. The Default value is 2.

• NO_TRIES – specifies how many times PROconfig/MotionPRO Developer will try to establish the
communication with your drive/motor before issuing error messages. The default value is 3.

• RS485_DTR – determines PROconfig/MotionPRO Developer to enable/disable the Data Terminal
Ready (DTR) line during communications. The Data Terminal Ready signal is sent by the PC to
RS485 communication device to indicate that the PC is ready to accept incoming transmission.
Possible values for the parameter: 0 (disabled) or 1 (enabled). The default value is 1 (enabled)

© ElectroCraft 2013 100 MPD User Manual

• RS485_RTS – determines PROconfig/MotionPRO Developer to enable/disable the Request To Send
(RTS) line. The Request To Send signals that request permission to transmit data is sent from PC to
RS485 communication device. Possible values for the parameter: 0 (disabled) or 1 (enabled). The
default value is 1 (enabled).

In order to add this parameters open the configuration file kernel.cfg with any text editor and at the end
of the file add a new section named [MPLCOMM]. Bellow the section definition, add the desired
parameters in the form parameter_name = parameter_value. Save the file and restart
PROconfig/MotionPRO Developer.

© ElectroCraft 2013 101 MPD User Manual

5.2. Communication Protocols

This section describes the communication protocols supported by the ElectroCraft Programmable drives /
motors. It presents how the MPL instructions are packed into messages, for each type of communication
channel.

This information is particularly useful for those applications where an external device like a host
implements directly one of the ElectroCraft communication protocols. In this case, the host packs the
binary code of each MPL command into a message which is sent, and unpacks each message received
to extract from it the data provided.

Remark: An alternate way to exchange data with the ElectroCraft drives/motors is via the MPL_LIB
libraries. A MPL_LIB library is a collection of high-level functions for motion programming which you can
integrate in the host/master application. If the host is an industrial PC, the MPL_LIB library may be
integrated in C/C++, Delphi Pascal, Visual Basic or LabVIEW applications. If the host is a
programmable logic controller (PLC), a version of the MPL_LIB, compatible with the PLCopen standard
for motion programming, may be integrated in the PLC IEC 61131-3 application (see ElectroCraft web
page www.ElectroCraft.com for details about the MPL_LIB libraries)

Depending on the drive/motor, you can use two types of communication channels:

• Serial RS-232 or RS-485

• CAN-bus

The serial RS-232 communication channel can be used to connect a host with one drive/motor. The serial
RS-485 and the CAN-bus communication channels can be used to connect up to 32 drives/motors with a
host.

Remark: The RS-485 and CAN-bus protocols accept up to 255 nodes. The limitation to 32 nodes is
determined by the hardware, using a conservative approach. If your application has more than 32 axes,
contact ElectroCraft. Depending on your drive/motor and network characteristics, we can provide you the
exact maximum number of axes you may use.

When CAN-bus communication is used, any drive/motor from the network may also be connected
through RS-232 or Ethernet with a host. In this case, this drive/motor:

• Executes the commands received from the host via the RS-232 link

• Executes the commands received from other ElectroCraft drives via the CAN-bus link

• Acts like a retransmission relay also called relay axis, which:

• Receives via RS-232, commands from host for another axis and retransmits them to the
destination via CAN-bus

• Receives via CAN-bus data requested by host from another axis and retransmits them to the
host via RS-232

© ElectroC

The relay
CAN-bus
to have a

Any drive
particular
connected

IMPORTA
how to se
drives/mo
expected

See also:

Message

Serial com

CAN-bus

CAN-bus

Craft 2013

y axis concep
network, usin
CAN-bus inte

e/motor acts a
setup. The o

d via RS-232

ANT! MotionP
end MPL com
otors. Using th

to be receive

structure. Ax

mmunication.

communicati

communicati

pt enables a
ng a single R
erface on the

as a relay ax
only requirem
(see Messag

PRO Develop
mmands using
his tool, you c
ed as answers

xis ID and Gro

RS-232 and

on. MPLCAN

on. ElectroCA

10

host to com
RS-232 or Eth

host, for whic

xis when it is
ment is to set
ge structure. A

per includes a
g one of the c
can get the ex
s.

oup ID

RS-485 proto

N protocol

AN protocol

02

mmunicate wit
hernet connec
ch the CAN-b

s connected b
tup the addre
Axis ID and G

a Binary Co
communicatio
xact contents

ocols

th all the Ele
ction with one
bus protocol is

both on RS-2
ess for the ho

Group ID for d

ode Viewer, w
on channels a
of the messa

MPD U

ectroCraft driv
e drive/motor
s completely

232 and CAN
ost equal wit

details)

which helps y
and protocols
ages to send

User Manual

ves/motors fr
r. There is no
transparent.

N-bus, withou
th that of the

you to quickl
s supported b
as well as of

rom a
 need

ut any
 drive

ly find
by the
those

© ElectroCraft 2013 103 MPD User Manual

5.2.1. Message Structure. Axis ID and Group ID

The data exchange on any communication bus and protocol is done using messages. Each message
contains one MPL instruction to be executed by the receiver of the message. Apart from the binary code
of the MPL instruction attached, any message includes information about its destination: an axis
(drive/motor) or group of axes. This information is grouped in the Axis/Group ID Code. Depending on
the communication bus and the protocol used, the Axis/Group ID Code and the binary code of the MPL
instruction attached are encapsulated in different ways.

Information included in a communication message

The first word Axis/Group ID Code identifies the destination axis or the group of axes that must receive
the message. The next words represent the codification of the MPL instruction transmitted.

The Axis/Group ID Code is a 16-bit word with the following structure:

Where:

 Bit 0 – HOST bit. 0 – relay axis, 1 – host. When a host is connected with a drive using RS-232,
the 2 devices must have the same axis ID (bits ID7-ID0 are identical). The HOST bit makes the difference
between the host and the drive connected to the other end. On RS-485, the host and the drives have
different axis ID, the HOST bit has as no significance and must be set to 0.

 Bits 11-4 – ID7-ID0: the 8-bit value of an axis ID or group ID

 Bit 12 – GROUP bit: 0 – ID7-ID0 value is an axis ID, 1 – ID7-ID0 value is a group ID

Depending on the communication bus and protocol used, either the entire 16-bit Axis/Group ID code is
included in a message or only a part of it. This part can be the 10 bits with useful information: HOST bit,
ID7 – ID0 bits and the GROUP bit or a subset of those.

Remark: In the following paragraphs, the terminology Axis ID Code or Group ID Code designates the
above 16-bit word. The terminology Axis ID and Group ID designates the 8-bit value of an axis or group
ID i.e. value of bits ID7 – ID0.

The following example describes how the HOST bit is used: Let’s suppose that we have 2 drives with the
axis ID=1 and axis ID=2 (values 1 and 2 represent the value of the bits ID7-ID0) connected between them
via CAN-bus. The host is connected via RS-232 to the drive with axis ID=1 which acts as a relay axis.
The host axis ID (host ID) must also be 1 but with the HOST bit set. The host sends a data request
message to the drive with the axis ID=2. The axis ID code of this request message is 2 e.g. the
destination axis. The message includes the sender axis ID code e.g. where the drive with ID=2 must
send the data requested. The sender axis ID code is the host address (ID=1 and the HOST bit set). The
request message is sent via RS-232 to drive with axis ID=1. This drive observes that the message
destination is another axis (e.g. ID=2) and resends the message via CAN-bus. The drive with the axis
ID=2, will receive the request message and send the answer via CAN-bus to the sender axis (e.g. host).

© ElectroCraft 2013 104 MPD User Manual

As the host has the same address as the relay axis, all the messages sent via CAN-bus and having as
destination the host are received by the relay axis. The relay axis looks at the HOST bit: if the bit is set,
then the message received is sent back via RS-232 to the host. If the HOST bit is not set, then the
message received is executed (it’s destination is the relay axis).

A message can be sent to an axis or to a group of axes. In the first case, the destination is specified via
an Axis ID code. In the second case, the destination is specified via a Group ID code. Each drive/motor
has its own 8-bit Axis ID and Group ID stored in the AAR MPL register. If the destination of a message is
specified via an Axis ID code, the message is received only by the axis with the same 8-bit Axis ID (bits
11-4 from the 16-bit Axis ID code). If the destination of a message is specified via a Group ID code, each
axis compares the 8-bit group ID from the message with its own group ID. If the two group IDs have at
least one group (bit set to 1) in common, the message is accepted. In the group ID, each bit corresponds
to one group:

Definition of the groups

A drive/motor can be programmed to be member of up to 8 groups. It will accept all the messages sent to
any of the groups his is member. For example, if the drive is member of groups 1, 2 and 4, i.e. its 8-bit
Group ID = 11 (00001011b), it will receive all the messages which have in their group ID value at least
one of the bits 0,1 or 3 set to 1.

Remarks:

• A message with axis ID = 0 and will be accepted independently of the receiver axis ID

• A broadcast message has the group ID = 0 and will be accepted by all the axes from the network,
independently of their group ID

On each drive/motor, the axis ID is initially set at power on using the following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data.

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default axis ID
value which is 255.

Remark: If the axis ID read from a valid setup table is 0 (option H/W), the axis ID is set with the value
read from the hardware switches/jumpers or in their absence with the default value 255

© ElectroCraft 2013 105 MPD User Manual

On each drive/motor, at power on, the group ID is set to 1. i.e. all drives/motors are members of the
group 1. For each drive/motor you can:

• Set/change its group ID using the MPL instruction GROUPID

• Add new groups to its group ID using the MPL instruction ADDGRID

• Remove groups from its group ID using the MPL instruction REMGRID.

Remark: You can read at any moment the actual values of the axis ID and group ID of a drive/motor
from the Axis Address Register AAR

The MPL instruction code can have 1 to 5 words. All the MPL instructions have at least one word – the
Operation Code. Depending on the type of MPL instruction, the operation code may be followed by 0-4
Data words.

Remark: Use Binary Code Viewer to get the binary code of MPL instructions

See also:

Communication protocols – Overview

Serial communication. RS-232 and RS-485 protocols

CAN-bus communication. MPLCAN protocol

CAN-bus communication. ElectroCAN protocol

© ElectroCraft 2013 106 MPD User Manual

5.2.2. Serial communication. RS-232 and RS-485 protocols

All the ElectroCraft drives/motors can communicate via RS-232. Some of them also accept RS-485 as a
substitute for RS-232. In the following paragraphs, the terminology serial communication refers to the
features common to both RS-232 and RS-485. The terminology RS-232 communication or RS-485
communication is used to features that are specific for one or the other.

The RS-232 communication is point-to point, full duplex, and enables you to link 2 devices. A typical
example is when you connect your PC with a ElectroCraft drive/motor.

Use the RS-232 communication if you want to:

a) Setup and/or program the motion on one drive/motor using a ElectroCraft development platform like
PROconfig or MotionPRO Developer, running on your PC

b) Control a drive/motor, with commands sent via communication from your host

c) Setup and/or program the motion on several drives/motors connected via CAN-bus, where one is
also connected via RS-232 with your PC

d) Control several drives/motors connected via CAN-bus, with commands sent from your host which is
connected via RS-232 with one of them

In cases c) and d), the ElectroCraft drive/motor connected to the host acts as a relay axis (see
Communication protocols overview for details).

The RS-485 communication is multi-point, half duplex, and enables you to link up to 32 drives/motors in a
network. In an RS-485 network, at one moment only one device is allowed to send data. If two devices
start by mistake to transmit in the same time, both transmissions are corrupted. Therefore for a correct
operation, in an RS-485 network it is mandatory to have a master, which controls the transmission. Put in
other words, only the master can initiate a transmission, while all the other devices from the network may
transmit only when the master asks them to provide some data. Normally you should set as master your
host.

Use the RS-485 communication if you want to:

a) Setup and/or program the motion on several drives/motors connected via RS-485 together with your
PC (requires an RS-485 interface or an RS-232/RS-485 adapter on your PC)

b) Control several drives/motors connected via RS-485, with commands sent from your host. The host is
seen as one node of the RS-485 network, and in must act as a master.

Remark: If the absence of a host, you can use any drive as master to control the RS-485 communication.
This is possible due to the powerful set of MPL commands for multiple axes (see Motion – Data Transfer
Between Axes)

Serial communication settings and message encapsulation

The ElectroCraft drives communicate serially using 8 data bits, 2 stop bits, no parity at the following baud
rates: 9600 (default after reset), 19200, 38400, 56600 and 115200. The messages exchanged through
serial communication are encapsulated in the following format:

© ElectroCraft 2013 107 MPD User Manual

Serial message structure – MPL Instruction encapsulation

The message length byte contains the total number of bytes of the message minus 2. Put in other words,
the length byte value is the number of bytes of the: Axis/group ID Code (2bytes), the Operation Code (2
bytes) and the Data words (variable from 0 to 8 bytes). The Checksum byte is the sum modulo 256 of all
the bytes of the message except the checksum byte itself.

Message types on serial communication

The serial communication protocol is based on 3 types of messages imposed by the nature of the MPL
commands encapsulated:

• Type A: Messages that don’t require an answer (a return message). These messages can be
sent either by a host or by another drive/motor and contain MPL instructions performing
parameter settings, motion programming, motor commands, etc.

• Type B: Messages that require an answer. These messages are sent by a host and contain one
of the on line MPL commands. These commands ask to return data, for example the value of a
MPL parameter, register, or variable.

• Type C: Messages sent by a drive/motor to a host without being requested by the host. These
messages may be sent either when a specific condition occurs or following the execution of the
MPL command SEND (see Messages sent to the host for details)

The next paragraphs present an example of each message type.

© ElectroCraft 2013 108 MPD User Manual

Example 1 – Type A Message: A host is connected to a drive/motor via RS-232 and sends the MPL
instruction “KPP = 5” (set proportional part of the position controller with value 5). The axis ID of host and
of the drive/motor are 255 = 0FFh. The Axis ID code and the MPL instruction binary code are:

Axis ID code + Binary code of MPL Instruction KPP = 5 sent to axis 255

Remark: Use Binary Code Viewer to get the binary code of MPL instructions

The host must send a serial message with the following contents:

Serial message: MPL Instruction KPP = 5 sent to axis 255

The drive/motor will return a byte 0x4F as confirmation that the message was received OK. (See below
the RS-232 and RS-485 protocols description for details)

Remarks:
a) If another drive with axis ID=1 is connected via CAN-bus with the drive having axis ID=255 and

the host wants to sent the same MPL instruction “KPP = 5” to axis 1, the Axis ID Code becomes
0010h instead of 0FF0h.

b) If the host is connected via RS-485 with a drive, the 2 devices must have different axis ID values.
For example if the host axis ID = 255 and the drive ID = 1, the message is the same as in remark
a)

© ElectroC

Example
the KPP (
memory
“GiveMeD
the KPP v

Remark:

A “GiveM

The “Tak

In the par

The axis I

Craft 2013

2 – Type B M
(proportional
is 025Eh. T
Data” reques
value returned

Use Comma

MeData” requ

“

eData” answ

rticular case o

Axis ID code

ID code and t

Axis ID

Message: A
term of the p

The ID of th
st and the dr
d by the drive

and Interprete

est message

“GiveMeData

wer message

“Tak

of this exampl

e + Binary cod

the binary cod

D Code + Bina

10

host is conne
osition contro
e host and
ive/motor ans

e/motor is 288

er to get MPL

for a MPL da

a” request for

includes the f

keData” answ

e, the axis ID

de of “GiveM

de of ”TakeD

ary code of “

09

ected to a driv
oller) paramet

the drive/mo
swers with a
8 (120h).

L data addres

ata includes th

r a MPL data –

following infor

wer - Messag

D code and th

MeData” requ

Data” are:

TakeData” w

ve via RS-23
ter from the d
otor are 255
“TakeData”

sses.

he following i

– Message d

rmation:

ge description

e binary code

est for KPP v

with KPP valu

MPD U

32 and wants
drive. KPP ad
5 = 0FFh. T
” message. L

nformation:

description

n

e of “GiveMe

value sent to a

ue from axis 2

User Manual

to get the va
ddress in MPL
The host sen
Let’s suppose

eData” are:

axis 255

255

alue of
L data
nds a
e that

© ElectroCraft 2013 110 MPD User Manual

The host must send a “GiveMeData” request message with the following contents:

Serial message: “GiveMeData” request for KPP value sent to axis 255

The drive/motor will return a byte 0x4F as confirmation that the message was received OK (See below
the RS-232 and RS-485 protocols description for details), then the “TakeData” answer message with the
following contents:

Serial message: “TakeData” with KPP value from axis 255

Remarks:

a) If another drive with axis ID=1 is connected via CAN-bus with the drive having axis ID=255 and the
host wants to get KPP value from axis 1, the Axis ID Code becomes 0010h instead of 0FF0h in the
“GiveMeData” message. The “Take Data” message also will have 0010h in instead of 0FF0h as
Sender Axis ID Code.

b) If the host is connected via RS-485 with a drive, the 2 devices must have different axis ID values. For
example if the host has axis ID = 255 and the drive has axis ID = 1, the modifications compared with
the above examples are:

· “GiveMeData”: Axis ID Code – 0010h instead of 0FF0h and Sender Axis ID Code – 0FF0
instead of 0FF1h (Host bit = 0);

· “TakeData”: Axis ID Code – 0FF0h instead of 0FF1h (Host bit = 0) and Sender Axis ID Code –
0010h instead of 0FF0h;

© ElectroCraft 2013 111 MPD User Manual

Example 3 – Type C Message: A host is connected to a drive via RS-232 and wants to be informed
when the programmed motion is completed. The axis ID of the host and the drive/motor are 255 = 0FFh.
A Type C message is a “TakeData2” message sent without a “GiveMeData2” request. It includes the
following information:

“TakeData2” - Message description

The destination axis is provided by the MPL variable MASTERID, according with formula: MASTERID =
host axis ID * 16 + 1. In this example, the 8-bit host axis ID = 255, hence MASTERID = 16 * 255 + 1 =
4081 (0xFF1). In the case of a Type C message, the “TakeData2” can return:

• The 32-bit value of the 2 status registers SRL (bits 15-0) and SRH (bits 31-16), if one of their
selected bits changes (the requested data address is the SRL address)

• The 16-bit value of the error register MER, if one of its selected bits changes

• The 16-bit value of the PVT/PT status PVTSTS, if PVT/PT buffer status changes

• The 16-bit or 32-bit MPL data requested to be sent with the MPL command SEND.

Remark: Use Command Interpreter to get the addresses for the above MPL data. Note that the SRL
and SRH status registers may also be accessed as a single 32-bit variable named SR32.

The bit selection is done via 3 masks, one for each register, set in MPL parameters: SRL_MASK,
SRH_MASK, MER_MASK. A bit set in a mask, enables a message transmission when the same bit from
the corresponding register changes. In this example, the motion complete condition is signaled by setting
SRL.10 = 1. To activate automatic sending of a “TakeData2” whenever SRL.10 changes, set
SRL_MASK = 0x0400.

If SRH = 0x201 and SRL = 0x8400, after SRL.10 goes from 0 to 1, the host gets a “TakeData2”
message with the following contents:

© ElectroCraft 2013 112 MPD User Manual

Serial message: “TakeData2” with status registers SRL and SRH from axis 255

Remark: A “TakeData2” message with SRL.10=1 signals that the last programmed motion is completed.
A “TakeData2” message with SRL.10=0 signals that a new motion has started and may be used as a
confirmation for the last motion command.

RS-232 communication protocol

The RS-232 protocol is full duplex, allowing simultaneous transmission in both directions. After each
command (Type A or B) sent by the host, the drive will confirm the reception by sending one
acknowledge-Ok byte. This byte is: ‘O’ (ASCII code of capital letter “o”, 0x4F). If the host receives the ‘O’
byte, this means that the drive has received correctly (checksum verification was passed) the last
message sent, and now is ready to receive the next message.

Remark: If the destination axis for the message is not the axis connected with the host via RS-232 (e.g.
the relay axis), but another axis connected with the relay axis via CAN-bus, the reception of the
acknowledge-Ok byte from the relay axis doesn’t mean that the message was received by the destination
axis, but just by the relay axis. Depending on the CAN-bus baud rate and the amount of traffic on this
bus, the host may need to consider introducing a delay before sending the next message to an axis
connected on the CAN-bus. This delay must provide the relay axis the time necessary to retransmit the
message via CAN-bus.

If any error occurs during the message reception, for example the checksum computed by the drive axis
doesn’t match with the one sent by the host, the drive will not send the acknowledge-Ok byte. If the host
doesn’t receive any acknowledge byte for at least 2ms after the end of the checksum byte transmission,
this means that at some point during the last message transmission, one byte was lost and the
synchronization between the host and the relay axis is gone. In order to restore the synchronization the
host should do the following:

1) Send a SYNC byte having value 0x0d (higher values are also accepted)

2) Wait a programmed timeout (typically 2ms) period for an answer;

3) If the drive sends back a SYNC byte having value 0x0d, the synchronization is restored and the
host can send again the last message, else go to step 1

4) Repeat steps 1 to 3 until the drive answers with a SYNC byte or until 15 SYNC bytes are sent. If
after 15 SYNC bytes the drive/motor still doesn’t answer, then there is a serious communication
problem and the serial link must be checked

© ElectroCraft 2013 113 MPD User Manual

When a host sends a type A message through RS-232 it has to:

a) Send the message (as in Example 1);

b) Wait the acknowledge-OK byte ‘O’ from the drive;

When a host sends a type B message through RS-232 it has to:

a) Send the request message (as in Example 2 in case of a “Give Me Data” command)

b) Wait the acknowledge-OK byte ‘O’ from the drive connected via RS-232 (relay axis);

c) Wait the answer message from the drive/motor (as in Example 2, in case of a “Take Data”
answer)

When the relay axis returns an answer message it doesn’t expect to receive an acknowledge byte from
the host. It is the host task to monitor the communication. If the host gets the response message with a
wrong checksum, it is the host duty to send again the data request.

RS-485 communication protocol

The RS-485 protocol is half duplex. If two devices start by mistake to transmit in the same time, both
transmissions are corrupted. Therefore for a correct operation, in an RS-485 network it is mandatory to
have a master, which controls the transmission. This means that only the master can initiate a
transmission, while all the other devices from the network may transmit only when the master asks them
to provide some data. Usually you should set as master your host.

After each command (Type A or B) sent by the host to one drive, the drive will confirm the reception by
sending one acknowledge-Ok byte. This byte is: ‘O’ (ASCII code of capital letter “o”, 0x4F). If the host
receives the ‘O’ byte, this means that the drive has received correctly (checksum verification was passed)
the last message sent, and now is ready to receive the next message.

The acknowledge-Ok byte is not sent when the host broadcasts a message to a group of drives.

If any error occurs during the message reception, for example if the checksum computed by the drive axis
doesn’t match with the one sent by the host, the drive will not send the acknowledge-Ok byte. If the host
doesn’t receive any acknowledge byte for at least 2ms after the end of the checksum byte transmission,
this means that at some point during the last message transmission, one byte was lost and the
synchronization between the host and the relay axis is gone. In order to restore the synchronization the
host should do the following:

1) Send 15 SYNC bytes having value 0x0d or any other bigger value up to 0xFF

2) Wait a programmed timeout (typically 2ms);

3) Send again the last command and wait for the drive answer

4) If the drive still doesn’t answer, then there is a serious communication problem and the serial link
must be checked

When a host sends a type A message through RS-485 it has to:

a) Send the message (as in Example 1);

b) Wait the acknowledge-OK byte ‘O’ from the drive, only if the message destination was a single
drive;

When a host sends a type B message through RS-485 it has to:

a) Send the request message (as in Example 2 in case of a “Give Me Data” command)

© ElectroCraft 2013 114 MPD User Manual

b) Wait the acknowledge-OK byte ‘O’ from the drive;

c) Wait the answer message from the drive/motor (as in Example 2, in case of a “Take Data”
answer)

Remarks:

• When using the RS-485 protocol, do not send Type B request messages to a group of axes,
because the answer messages will overlap

• When using the RS-485 protocol, the Type C messages must be suppressed. Only the
host/master is allowed to initiate a transmission

When a drive returns an answer message it doesn’t expect to receive an acknowledge byte from the host.
It is the host task to monitor the communication. If the host gets the response message with a wrong
checksum, it is the host duty to send again the data request.

See also:

Communication protocols – Overview

CAN-bus communication. MPLCAN protocol

CAN-bus communication. ElectroCAN protocol

Message structure. Axis ID and Group ID

© ElectroC

5

ElectroCA
drives/mo
ElectroCra
using CAN
on the sam

On reque
The differ
done only
number s
firmware r

ElectroCA
125kb, 25
possibility
through it
CAN-bus

In Electro

a) Norm

b) TakeD

c) Grou

d) Host

e) PVT –

f) Sync

g) Broad
system

h) TakeD

Each cate
terminolog

Craft 2013

.2.3. CAN-b

AN is an alte
otors without
aft drives/mo
Nopen protoc
me physical b

st, the Electro
rence betwee
y through the
starting with 2
revision.

AN is based
50kb, 500kb

y to connect a
t to access a
and RS-232

CAN the MPL

mal – includes

Data – includ

p – includes a

– includes th

– includes the

hronization –

dcast – inclu
m) except the

Data2 – inclu

egory is mapp
gy for a CAN

bus commu

ernate protoc
CANopen. E

otors without
col. ElectroCA
bus.

oCraft drives/
en the drives/

firmware: all
2 i.e. a firmw

on CAN2.0A
(default afte

a PC via a s
all the Electro
becomes a re

L instructions

s all the MPL i

es the answe

all the MPL in

e answers to

e instruction P

– includes the

udes all the
e request Give

des the answ

ped in the foll
message ide

11

unication. E

col to MPLCA
ElectroCAN w
CANopen on

AN and CANo

/motors witho
motors with M
the ElectroC

ware code is

A using 11 bi
er reset), 80
erial RS-232

oCraft drives/
elay axis (see

 are split into

instructions a

er “TakeData”

nstructions mu

all the other

PVTP (the ins

e synchroniza

MPL instruct
eMeData.

wers “TakeDa

lowing range
entifier):

5

ElectroCAN

AN – the def
was specifica
n a CANopen
open do not d

out CANopen
MPLCAN pro

Craft products
F2xxY, wher

ts for the ide
00kb and 1M

link to any d
motors. In th

e Communica

8 categories

addressed to a

” to the reque

ulticast to a g

on line MPL c

struction is to

ation message

tions address

ta2” to the re

of COB-ID (C

protocol

fault CAN-bu
ally designed
n network wh
disturb each o

may be deliv
otocol and tho
 equipped wi

re 2xx is the

entifier. It acc
Mb. Like MP
drive/motor fr
his case, this
ation protocols

:

a single drive

est “GiveMeDa

group of drive

commands ex

long to be se

e for the grou

sed to the gr

quest “GiveM

Communicati

MPD U

us protocol fo
d to permit
here messag
other and the

vered with Ele
ose with Elec
th ElectroCA
firmware num

cepts the foll
PLCAN, Elect
rom the CAN

drive/motor
s – Overview

e/motor (axis)

ata”

s/motors

xcept “TakeD

ent as a norm

up 0

roup 0 (to th

MeData2”

on Object Ide

User Manual

or the Electro
connection o
es are excha
refore can co

ectroCAN pro
ctroCAN proto
AN have a firm
mber and Y

owing baud
troCAN offer

Nopen networ
connected bo

w for details)

Data”

al message)

e all drives

entifier – CAN

oCraft
of the
anged
o-exist

otocol.
ocol is
mware
is the

rates:
rs the
rk and
oth to

in the

Nopen

© ElectroC

ElectroCA
CANopen
disturbing

The next t

Craft 2013

AN uses only
n protocol can
g each other.

table shows h

COB-IDs ou
n co-exist and

how ElectroC

11

tside of the ra
d communicat

AN COB-IDs

6

ange used by
te simultaneo

are assigned

y CANopen.
ously on the s

d in relation w

MPD U

Thus, Electro
same physica

with the CANo

User Manual

oCAN protoco
l CAN bus, w

open COB-IDs

ol and
without

s.

© ElectroC

Remarks

• The

• The

Craft 2013

: In comparis

e maximum n

e maximum n

C

son with MPLC

number of axe

number of gro

11

CANOpen and

CAN, TechoC

es is 31: poss

oups is 5: pos

7

d ElectroCAN

CAN has the f

sible Axis ID v

ssible Group I

N COB-IDs

following rest

values: 1 to 3

ID values: 1 to

MPD U

trictions:

31

o 5

User Manual

© ElectroCraft 2013 118 MPD User Manual

Normal messages encapsulation: COB-ID: 121h – 13Fh

Host messages encapsulation: COB-ID: 141h – 15Fh

Remark: Host messages occur only when a drive/master answers to a data request (other then
“GiveMeData”) where the Sender Axis ID has the HOST bit set to 1. This happens for example when the
host is a PC connected to one of the drives/motors via RS-232 and asks a data from another drive/motor.
The answer will be sent to the relay axis as a Host message. The Host messages do not occur when the
request is sent by a drive or by a host/master connected directly on the CAN bus.

© ElectroCraft 2013 119 MPD User Manual

Take Data messages encapsulation: COB-ID: 161h – 17Fh

Remarks: In the Take Data messages, the 10-byte code of the Take Data MPL instruction is compacted
to 8-bytes. This is done in the following way:

• From the 16-bit Operation Code, only the first 10LSB are transmitted. The 6MSB are always
constant: 0x2D (101101b) and are not transmitted. The receiver of a Take Data message must
add 0x2D on the 6MSB of the Operation Code received in order to restore the full 16-bit code for
TakeData instruction.

• The HOST bit is transmitted in bit 2 of byte 1. There is no need to send the GROUP bit because
the GiveMeData request can’t be sent to a group of drives/motors.

• The first data word of the TakeData MPL instruction is the Sender Axis ID. As the maximum
number of drives is limited to 31, only bits 8-4 are useful and are transmitted.

© ElectroCraft 2013 120 MPD User Manual

Group messages encapsulation: COB-ID: 001h – 01Fh

PVT messages encapsulation: COB-ID: 041h – 05Fh

Remarks: In the PVT messages, the 10-byte code of the PVT MPL instruction is compacted to 8-bytes.
This is done in the following way:

• The Operation Code is not transmitted. The receiver of a PVT message adds 0x6 on the 9MSB of
the Operation Code received and the Counter value on the 7LSB in order to restore the full 16-bit
code for PVT instruction.

• The first data word of the PVT instruction contains the 15LSB of the 24 bits Position

• The second data word of the PVT instruction contains the 8LSB of the 24 bits Speed value and
the 8 MSB of the 24 bits Position value.

• The third data word of the PVT instruction contains the 16MSB of the 24 bits Speed value.

• The fourth data word of the PVT instruction contains the 9bits Time value.

© ElectroCraft 2013 121 MPD User Manual

Synchronization messages encapsulation: COB-ID: 020h

Remarks:

• The message has zero data bytes

• The Operation Code is 0x1000

• The synchronization messages are broadcast messages; they are received by every drive
connected to the network

Broadcast messages encapsulation: COB-ID: 200h

© ElectroCraft 2013 122 MPD User Manual

Take Data 2 messages encapsulation: COB-ID: 101h – 11Fh

Remarks:

• The message will be never receive by one of the ElectroCraft drive, the message is dedicate for
other drives.

• The COB-ID contains the Expeditor Axis ID for the host to get the answers one by one, prioritized
in the ascending order of the expeditors’ axis ID.

• The VT bit specifies the data length (VT = 0 for 16bits or VT = 1 for 32 bits) and is transmitted in
the first byte sent.

• The P bit specifies if the message is TakeData2, in reply to a GiveMeData2 message, or a
PONG, in reply to a PING message. The PING message is a broadcast message that requests
the Axis ID and the firmware version of the drives in the network. For P=0 the message is Take
Data2 and for P = 1 the message is a PONG (the VT bit is automatically reset and it has no
meaning).

Example 1: A host connected on a CANopen network sends to drive/motor with axis ID = 5 the MPL
instruction “KPP = 0x1234” (set proportional part of the position controller with value 0x1234). The Axis
ID Code and the MPL instruction binary code are:

Binary code of MPL instruction KPP =0x1234

Remark: Use Binary Code Viewer to get the binary code of MPL instructions

© ElectroCraft 2013 123 MPD User Manual

The host must send a ElectroCAN message with the following contents:

ElectroCAN message: MPL instruction KPP =0x1234 sent to axis 5

Remark: The last 4 bytes are not used and are not transmitted

Example 2: A host connected on a CANopen network wants to get the value of the position error from
the drive/motor with the axis ID=5. The host axis ID is 3. The position error is the 16-bit MPL variable
named POSERR and its address in the MPL data memory is 0x022A. The host sends to axis 5 a
“GiveMeData” request for the MPL variable POSERR and waits for the “TakeData” answer.

The Axis ID Code and the binary code of “GiveMeData” request for POSERR are:

Binary code of GiveMeData request for POSERR value sent to axis 5

© ElectroCraft 2013 124 MPD User Manual

The host must send a ElectroCAN message with the following contents:

ElectroCAN message: GiveMeData request for POSERR value sent to axis 5

Remark: The last 2 byes are not used and are not transmitted.

Supposing that the drive/motor with Axis ID = 5 returns a position error POSERR = 2, the Axis ID Code
and the binary code of the “TakeData” answer is:

Binary code of TakeData with POSERR value from axis 5

© ElectroCraft 2013 125 MPD User Manual

The host gets a ElectroCAN message with the following contents:

ElectroCAN message: TakeData with POSERR value from axis 5

Remark: The last 2 byes are not used and are not transmitted.

Example 3: A PVT command is sent to the drive with the axis ID 5 like following: pvtp -1000L, -10, 500U,
0 (set the coordinates for the next point the position at -1000 IU = 0,5 rot = FFFC18h, the speed at -10IU
= 300 rpm = FFF600 and the time 500IU = 0,5s = 01F4).

Binary code of PVT command sent to axis 5

© ElectroCraft 2013 126 MPD User Manual

The ElectroCAN message sent has the following contents:

ElectroCAN message: PVT command for axis 5

Example 4: If a ElectroCraft drive/motor receives the MPL instruction SETSYNC 20, it becomes the
synchronization master and starts sending every 20ms a synchronization message and its time to the all
drives connected in the CAN bus network.

At a moment the master time has the value 0x246C46F and the code of MPL instruction is the following:

Binary code of Set Master Time command sent to all axes

The ElectroCAN messages are:

• The synchronization message that when it is received by everybody specifics time variables are
saved.

 ElectroCAN message: Synchronization command for all axes

Remark: The last 8 bytes are not used and are not transmitted.

• The master broadcast messages with the command to the slaves to set the master time

© ElectroCraft 2013 127 MPD User Manual

ElectroCAN message: Set Master Time command to all axes

Example 5: If for example the axis 2 encounters a control error, the drive sends a message with the
value of the error register MER (0x0008) with a TakeData2 instruction which has the following content:

Binary code of TakeData 2 with MER register value from axis 2

Remark: The VT bit is set to zero

The ElectroCAN message sent has the following contents:

 ElectroCAN message: TakeData2 command from axis 2

Remark: The last 3 byes are not used and are not transmitted.

See also:

Communication protocols – Overview

Message structure. Axis ID and Group ID

Serial communication. RS-232 and RS-485 protocols

CAN-bus communication. MPLCAN protocol

© ElectroCraft 2013 128 MPD User Manual

5.2.4. CAN-bus communication. MPLCAN protocol

Most of the ElectroCraft drives/motors can communicate via CAN-bus. The CAN-bus communication is
multi-point, half duplex, and enables you to link up to 32 drives/motors in a network.

The major advantage of the CAN-bus is its capability to solve automatically the conflicts. On a CAN-bus
network, if two devices start to transmit in the same time, one of them (having the higher priority) always
wins the network access and completes the transmission. The other device, after losing the network
access, commutes from transmission to reception, receives the message with the higher priority, then
tries again to transmit its own message. All this procedure is done automatically by the hardware (CAN-
bus controller) and it is transparent at higher levels. Put in other words, one can work with a CAN-bus
network like being full duplex, knowing that if transmission conflicts occur, these are automatically solved.

ElectroCraft drives/motors have been specifically designed to exploit the CAN-bus benefits. For example,
in multi-axis applications you can really distribute the intelligence between the master and the
drives/motors. Instead of trying to command each step of an axis movement, you can program the
drives/motors using MPL to execute complex tasks and inform the master when these are done. Thus for
each axis the master task may be reduced at: calling MPL functions (with possibility to abort their
execution if needed) and waiting for a message, which confirms the execution. If needed, the
drives/motors may also be programmed to send periodically information messages to the master so it can
monitor a task progress.

Depending on product, ElectroCraft drives/motors are delivered either with MPLCAN protocol or with
CANopen. On request, the MPLCAN protocol, which is based on CAN2.0B, may be replaced with
ElectroCAN protocol which is based on CAN2.0A. ElectroCAN was specifically designed to permit
connection of the ElectroCraft drives/motors without CANopen on a CANopen network where messages
are exchanged using CANopen protocol. ElectroCAN and CANopen do not disturb each other and
therefore can co-exist on the same physical bus.

Message encapsulation in MPLCAN protocol

MPLCAN is based on CAN2.0B using 29 bits for the identifier. It accepts the following baud rates: 125kb,
250kb, 500kb (default after reset), 800kb and 1Mb.

The message destination (an axis or a group of axes) and the MPL instruction binary code are
encapsulated as follows:

CAN message identifier of a message sent to:

Axis

Group

Broadcast

© ElectroC

CAN mes

Message

The CAN
command

• T
s
p

• T
o
M

• T
m
M

The next

Craft 2013

ssage data by

 types on CA

N-bus commu
ds encapsulat

Type A: Mess
sent either b
parameter set

Type B: Mess
of the on line
MPL paramete

ype C: Mess
messages may
MPL command

paragraphs p

ytes:

AN-bus comm

unication is b
ted:

sages that do
by a host or
ttings, motion

sages that req
MPL comma
er, register, o

ages sent by
y be sent eith
d SEND (see

present an exa

12

munication

based on 3 t

on’t require a
r by another
n programmin

quire an answ
ands. These c
or variable.

y a drive/moto
her when a s
Messages s

ample of each

29

types of mes

an answer (a
drive/motor

g, motor com

wer. These m
commands as

or to a host w
specific condit
sent to the ho

h message ty

ssages impos

return mess
and contain

mmands, etc.

messages are
sk to return d

without being
tion occurs o
ost for details

ype.

MPD U

sed by the n

sage). These
n MPL instru

sent by a ho
data, for exam

g requested b
or following th
s)

User Manual

nature of the

messages ca
uctions perfo

st and contai
mple the valu

by the host. T
he execution

 MPL

an be
orming

n one
e of a

These
of the

© ElectroCraft 2013 130 MPD User Manual

Example 1 – Type A Message: A host connected on CAN-bus sends to drive/motor with axis ID = 5 the
MPL instruction “KPP = 0x1234” (set proportional part of the position controller with value 0x1234). The
MPL instruction binary code are:

Binary code of MPL instruction KPP =0x1234

Remark: Use Binary Code Viewer to get the binary code of MPL instructions

The CAN message identifier is:

CAN message identifier: MPL instruction KPP =0x1234 sent to axis 5

The host must send a CAN message with the following contents:

 CAN message: MPL instruction KPP =0x1234 sent to axis 5

Example 2 – Type B Message: A host wants to get the position error of 2 drives/motors, which are
members of group 1. The host axis ID is 3 and the drives/motors axis ID are 5 and 7. The position error is
the 16-bit MPL variable named POSERR and its address in the MPL data memory is 0x022A. The host
sends to group 1 a “GiveMeData2” request for the MPL variable POSERR and waits for the
“TakeData2” answers.

The Group ID Code and the binary code of “GiveMeData2” request for POSERR are:

Binary code of GiveMeData2 request for POSERR value sent to group 1

The CAN message identifier is:

CAN message identifier: GiveMeData2 request for POSERR value sent to group 1

© ElectroCraft 2013 131 MPD User Manual

The host must send a CAN message with the following contents:

CAN message: GiveMeData2 request for POSERR value sent to group 1

Supposing that the drive/motor with Axis ID = 5 returns a position error POSERR = 2, the binary code of
the “TakeData2” answer is:

Binary code of TakeData2 with POSERR value from axis 5

The CAN message identifier is:

CAN message identifier: TakeData2 with POSERR value from axis 5

The host gets a CAN message with the following contents:

CAN message: TakeData2 with POSERR value from axis 5

Supposing that the drive/motor with Axis ID = 7 returns a position error POSERR = 1, the binary code of
the “TakeData2” answer is:

Binary code of TakeData2 with POSERR value from axis 7

© ElectroCraft 2013 132 MPD User Manual

The CAN message identifier is:

CAN message identifier: TakeData2 with POSERR value from axis 7

The host gets a CAN message with the following contents:

CAN message: TakeData2 with POSERR value from axis 7

Example 3 – Type C Message: A host is connected to a drive via CAN-bus and wants to be informed
when the programmed motion is completed. The host axis ID = 255 and the drive/motor axis ID = 1. A
Type C message is a “TakeData2” message sent without a “GiveMeData2” request. It includes the
following information:

“TakeData2” – Message description

The destination axis is provided by the MPL variable MASTERID, according with formula: MASTERID =
host axis ID * 16 + 1. In this example, the 8-bit host axis ID = 255, hence MASTERID = 16 * 255 + 1 =
4081 (0xFF1). In the case of a Type C message, the “TakeData2” can return:

• The 32-bit value of the 2 status registers SRL (bits 15-0) and SRH (bits 31-16), if one of their
selected bits changes (the requested data address is the SRL address)

• The 16-bit value of the error register MER, if one of its selected bits changes

• The 16-bit value of the PVT/PT status PVTSTS, if PVT/PT buffer status changes

• The 16-bit or 32-bit MPL data requested to be sent with the MPL command SEND.

Remark: Use Command Interpreter to get the addresses for the above MPL data. Note that the SRL
and SRH status registers may also be accessed as a single 32-bit variable named SR32.

The bit selection is done via 3 masks, one for each register, set in MPL parameters: SRL_MASK,
SRH_MASK, MER_MASK. A bit set in a mask, enables a message transmission when the same bit from
the corresponding register changes. In this example, the motion complete condition is signaled by setting

© ElectroCraft 2013 133 MPD User Manual

SRL.10 = 1. To activate automatic sending of a “TakeData2” whenever SRL.10 changes, set
SRL_MASK = 0x0400.

Supposing that the drive/motor with Axis ID = 1 returns SRH = 0x201 and SRL = 0x8400, after SRL.10
goes from 0 to 1, the Axis ID Code and the binary code of the “TakeData2” message is:

Axis ID Code + Binary code of TakeData2 with status registers SRL and SRH from axis 1

The CAN message identifier is:

CAN message identifier: TakeData2 with status registers SRL and SRH from axis 1

The host gets a CAN message with the following contents:

 CAN message: TakeData2 with status registers SRL and SRH from axis 1

Remark: A “TakeData2” message with SRL.10=1 signals that the last programmed motion is completed.
A “TakeData2” message with SRL.10=0 signals that a new motion has started and may be used as a
confirmation for the last motion command.

See also:

Communication protocols – Overview

CAN-bus communication. ElectroCAN protocol

Message structure. Axis ID and Group ID

Serial communication. RS-232 and RS-485 protocols

© ElectroCraft 2013 134 MPD User Manual

6. Application Programming

6.1. Motion Programming – drives with built-in Motion Controller

One of the key advantages of the ElectroCraft drives/motors is their capability to execute complex
motions without requiring an external motion controller. This is possible because ElectroCraft drives offer
in a single compact package both a state of art digital drive and a powerful motion controller.

Programming motion on a ElectroCraft drive/motor means to create and download a MPL (ElectroCraft
Motion Program Language) program into the drive/motor memory. The MPL allows you to:

• Set various motion modes (profiles, PVT, PT, electronic gearing or camming, etc.)

• Change the motion modes and/or the motion parameters

• Execute homing sequences

• Control the program flow through:

o Conditional jumps and calls of MPL functions

o MPL interrupts generated on pre-defined or programmable conditions (protections triggered,
transitions on limit switch or capture inputs, etc.)

o Waits for programmed events to occur

• Handle digital I/O and analogue input signals

• Execute arithmetic and logic operations

• Perform data transfers between axes

• Control motion of an axis from another one via motion commands sent between axes

• Send commands to a group of axes (multicast). This includes the possibility to start
simultaneously motion sequences on all the axes from the group

• Synchronize all the axes from a network

With MPL, you can really distribute the intelligence between the master and the drives/motors in complex
multi-axis applications. Thus, instead of trying to command each step of an axis movement, you can
program the drives/motors using MPL to execute complex tasks and inform the master when these are
done. Thus for each axis the master task may be reduced at: calling MPL functions (with possibility to
abort their execution if needed) and waiting for a message, which confirms the execution. If needed, the
drives/motors may also be programmed to send periodically information messages to the master so it can
monitor a task progress.

A MPL program includes a main section, followed by the subroutines used: functions, interrupt service
routines and homing procedures. The MPL program may also include cam tables used for electronic
camming applications.

When you select the “Motion” part of an application, you access the main section of your application MPL
program.

© ElectroCraft 2013 135 MPD User Manual

You can select the other components of a MPL program too. Each has 2 types of access views:

• Definition and/or selection view, with the following purposes:

o Homing modes: select the homing procedure(s) to use from a list of already defined
procedures.

o Functions: create new MPL functions (initially void) and manipulate those defined: delete,
rename, change their order in the program

o Interrupts: choose the MPL interrupt service routines you want to view/change their default
implementation

o Cam Tables: create new cam tables loaded from other applications or imported from text files
and manipulate those defined: select those to be downloaded and their order, delete or
rename.

• Edit view – for editing the contents. There is one edit view for each homing procedure and cam
table selected, for each function defined and each interrupt chosen for view/edit.

In order to help you create a MPL program, MotionPRO Developer includes a Motion Editor which is
automatically activated when you select “M Motion” – the main section view or an edit view for a homing
procedure, function or interrupt service routine. The Motion Editor adds a set of toolbar buttons in the
project window just below the title bar. Each button opens a programming dialogue. When a programming
dialogue is closed, the associated MPL instructions are automatically generated. Note that, the MPL
instructions generated are not a simple text included in a file, but a motion object. Therefore with Motion
Editor you define your motion program as a collection of motion objects.

The major advantage of encapsulating programming instructions in motion objects is that you can very
easily manipulate them. For example, you can:

• Save and reuse a complete motion program or parts of it in other applications

• Add, delete, move, copy, insert, enable or disable one or more motion objects

• Group several motion objects and work with bigger objects that perform more complex functions

The Motion Editor includes the following programming dialogues:

Motion Programming and control
Trapezoidal Profiles

S-curve Profiles

PT

PVT

External

Electronic Gearing

Electronic Camming

Motor Commands

Position Triggers

Homing

Contouring

© ElectroCraft 2013 136 MPD User Manual

Test

© ElectroCraft 2013 137 MPD User Manual

Events Programming

Event Types

When the actual motion is complete

Function of motor or load position

Function of motor or load speed

After a wait time

Function of reference

Function of inputs status

Function of a variable value

Jumps and Function Calls

I/O Handling

Assignment & Data Transfer
16-bit Integer Data

32-bit Integer Data

Arithmetic Operations

Multiple Axis Data Transfer

Send to Host

Miscellaneous commands

Interrupt Settings

Free Text Editor

See also:

Motion View

Homing Procedures View

Functions View

Interrupts View

Cam Tables View

© ElectroCraft 2013 138 MPD User Manual

6.1.1. Motion Programming Toolbars

The top toolbar contains the buttons associated to motion programming dialogues.

 The “Motion – Trapezoidal Profiles“allows you to program a positioning path described through a
series of points. Each point specifies the desired Position and Time, i.e. contains a PT data. Between the
points the built-in reference generator performs a linear interpolation.

 The “Motion – S-curve Profiles” allows you to program a position profile with an S-curve shape of
the speed. This shape is due to the jerk limitation, leading to a trapezoidal or triangular profile for the
acceleration and an S-curve profile for the speed.

 The “Motion - PT” allows you to program an arbitrary profile whose contour is described by a
succession of linear segments.

 The “Motion – PVT” allows you to program a positioning path described through a series of points.
Each point specifies the desired Position, Velocity and Time, i.e. contains a PVT data. Between the points
the built-in reference generator performs a 3rd order interpolation

 The “Motion – External” allows you to program the drives/motors to work with external reference
provided by another device.

 The “Motion – Electronic Gearing” dialogue allows you to set the drives as master or a slave for
electronic gearing mode.

 The “Motion – Electronic Camming” dialogue allows you to set the drives as master or a slave for
electronic camming mode.

 The “Motor Commands” allows you to apply one of following commands to the motor:
activate/deactivate the control loops and the power stage PWM output commands (AXISON / AXISOFF),
stop the motor with acceleration/deceleration set, change the value of the motor position and position
reference.

 The “Motion – Position Triggers” dialogue allows you to define 4 position trigger points.

 The “Motion – Homing” dialogue allows you choose a homing procedure and set its parameters.

© ElectroCraft 2013 139 MPD User Manual

 The “Motion - Contouring” allows you to program an arbitrary contour via a series of points.
Between the points, linear interpolation is performed, leading to a contour described by a succession of
linear segments.

 The "Test" dialogue allows you to set the drives/motors in a special test configuration.

 The “Events” allows you to define an event to be monitored and to perform several actions.

 The “Jumps and Function Calls” allows you to control the MPL program flow through unconditional
or conditional jumps and unconditional, conditional or cancelable calls of MPL functions.

 The “I/O” allows you program operations with the digital inputs and outputs of the drives/motors.

 The “16-bit Integer Data” helps you to program an assignment operation through which you can set
the value of a 16-bit variable or set a memory location with a 16-bit immediate value or the value of a 16-
bit variable.

 The “32-bit Long or Fixed Data” helps you to program an assignment operation through which you
can set the value of a 32-bit variable, set the low part (16LSB) or the high part (16MSB) of a 32-bit
variable with a 16-bit value / variable value, set a memory location with a 32-bit immediate value or the
value of a 32-bit variable.

 The “Arithmetic Operations” helps you to program one of the arithmetic operations accepted by the
MPL (ElectroCraft Motion Program Language): addition, subtraction, product or shifting.

 The “Data Transfer Between Axis” helps you to program the data transfer operations between
drives that are connected in a network.

 The “Send Data to Host” dialogue allows you to choose what information is sent by the drive
automatically. You can send information about status register, error register or variables.

 The “Miscellaneous” dialogue allows you to declare new variables, reset FAULT status, insert a
END instruction, insert an NOP instruction, set the baud rates for the Serial Communication Interface
(SCI) used for RS-232 and RS-485, set the baud rates for the CAN communication.

© ElectroCraft 2013 140 MPD User Manual

 The “MPL Interrupt Settings” allows you to activate and/or deactivate the MPL (ElectroCraft Motion
Program Language) interrupts

 The “Free text” opens a dialogue where you can freely insert comments or MPL instructions in the
current position.

Once the parameters have been entered, a "motion sequence" is created. Such a sequence represents a
macro-instruction to which one or more specific MPL instructions correspond. The MotionPRO Developer
automatically generates the MPL code for these motion sequences.

The right toolbar contains buttons used for the motion sequences management.

 Insert. Allows you choose a new motion sequence to be inserted.

- Motion.

� Trapezoidal Profiles. This command allows you to program a position or speed
profile with a trapezoidal shape of the speed, due to a limited acceleration.

� S-Curve Profiles. This command allows you to program a positioning with a limited
jerk. In an S-curve mode, the acceleration profile is trapezoidal and the speed profile
is like an S-curve.

� PT The command allows to program a positioning with path described through a set
of points, for each point you specify

� PVT. This command allows you to program a positioning described through a series
of points, each point includes the desired position, the speed and the time at which
the position is to be reached. The user points are interpolated using third order
polynomials.

� External. This command allows you to set the drives working with an external
reference provided by another device.

� Electronic Gearing. This command dialogue allows you to set the drives as master
or a slave for electronic gearing mode.

� Electronic Camming. This command dialogue allows you to set the drives as master
or a slave for electronic camming mode.

� Motor Commands. This command allows you to apply one of following commands
to the motor: activate/deactivate the control loops and the power stage PWM output
commands (AXISON / AXISOFF), stop the motor with acceleration/deceleration set,
change the value of the motor position and position reference

� Position Triggers. This command opens the dialogue where you define the
triggering values for each trip point.

� Homing

� Contouring. This command allows you to program an arbitrary profile whose contour
is described by a succession of linear segments

© ElectroCraft 2013 141 MPD User Manual

� Test. This command dialogue allows you to set up the drives in a special test
configuration.

- Events. This command allows you to define an event (a condition) to be monitored and to
perform several actions.

- Jumps and Function Calls. This command allows you program the operations related with
the control of the program flow.

- I/O. This command allows you program operations with the digital inputs and outputs of the
drives

- Assignment & Data Transfer

� 16-bit Integer Data. This command helps you to program an assignment operation
through which you can set the value of a 16-bit variable or set a memory location with
a 16-bit immediate value or the value of a 16-bit variable.

� 32-bit Long or Fixed Data. This command helps you to program an assignment
operation through which you can set the value of a 32-bit variable, set the low part
(16LSB) or the high part (16MSB) of a 32-bit variable with a 16-bit value / variable
value, set a memory location with a 32-bit immediate value or the value of a 32-bit
variable.

� Arithmetic Operations. This command helps you to program one of the arithmetic
operations accepted by the MPL (ElectroCraft Motion Program Language): addition,
subtraction, product or shifting.

� Data Transfer Between Axes. This command helps you to program the data
transfer operations between drives that are connected in a network.

� Send Data to Host. This command allows you to choose what information is sent by
the drive automatically. You can send the status register (low part - SRL and high
part - SRH), error register (MER) or the value of a variable.

� Miscellaneous. This command opens the dialogue from where you can declare new
variables and insert FAULTR, END, NOP, SPI and SCI instructions.

- Interrupt Settings. This command allows you to activate and/or deactivate the MPL
interrupts.

- Free text. This command opens a dialogue where you can freely insert a sequence of MPL
instructions in the current position in the Motion Editor window.

 Edit. Pressing this button, the dialogue associated with the selected motion sequence opens,
allowing changing the motion parameters.

 Duplicate. Duplicate the selected motion sequence.

 Move Down. Moves down the selected motion sequence.

© ElectroCraft 2013 142 MPD User Manual

 Move Up. Moves up the selected motion sequence.

 Delete. Delete the selected motion sequence.

 Group. The button allows you to group the selected motion sequences in a new object containing all
the selected motion objects. You can give a name or title to the grouped object. This embedding process
can be performed in consecutive steps. Any grouped object is displayed with a leading [+] symbol. Click
on the [+] symbol to expand the grouped object content to the next embedding level. The leading [+]
symbol transforms into a leading [-] symbol. Click the [-] symbol to group back the expended object.
Successive embedded levels are accepted.

 Ungroup. Use the “Ungroup” command to restore the motion objects list instead of the group object.

 Enable. For debugging, you have the possibility to remove motion sequences (one or more motion
objects) from the motion program like commenting lines in a text program. Use the the “Enable” button to
uncomment / enable motion sequences.

 Disable. For debugging, you have the possibility to remove motion sequences (one or more motion
objects) from the motion program like commenting lines in a text program. Use the “Disable” button to
comment / disable motion sequences.

 Import. Use the “Import” button to load/insert motion objects previously saved in *.msq files. These
are appended below the current position e.g. the immediately after the selected motion object.

 Export. You can select a part of your program (one or more motion objects) and save it in a separate
motion file, using the "Export" button. The operation saves the selected motion objects in a file with
extension *.msq.

See also:

Motion programming Toolbars for Multi-axis motion controller

© ElectroCraft 2013 143 MPD User Manual

6.1.2. Motion Trapezoidal Profile

The “Motion – Trapezoidal Profiles” dialogue allows you to program a position or speed profile with a
trapezoidal shape of the speed, due to a limited acceleration.

In the position profile, the load/motor is controlled in position. You specify either a position to reach in
absolute mode or a position increment in relative mode, plus the slew (maximum travel) speed and the
acceleration/deceleration rate. In relative mode, the position to reach can be computed in 2 ways:
standard (default) or additive. In standard relative mode, the position to reach is computed by adding the
position increment to the instantaneous position in the moment when the command is executed. In the
additive relative mode, the position to reach is computed by adding the position increment to the previous
position to reach, independently of the moment when the command was issued. During motion, you can
change on the fly the position command, the slew speed and the acceleration/deceleration rate.

In the speed profile, the load/motor is controlled in speed. You specify the jog speed (speed sign
specifies the direction) and the acceleration/deceleration rate. The load/motor accelerates until the jog
speed is reached. During motion, you can change on the fly the slew speed and the
acceleration/deceleration rate.

You can switch at any moment between position and speed profiles or to any of these from another
motion mode.

IMPORTANT: Some setup configurations foresee a transmission ratio between the motor and the load. In
these cases, the load position and speed are different from the motor position and speed. The motion
parameters refer always to the load trajectory.

Choose Position to program a position profile. Select positioning mode Relative or Absolute. For
relative positioning, check Additive to add the position increment to the position to reach set by the
previous motion command. Set the values of the Acceleration rate and the Slew speed. Select the
measuring units from the lists on the right. In the absolute positioning mode, set the value of the Position
to reach. In the relative positioning, set the value of the Position increment.

Remark: The position profile option is available only if the drive/motor is setup to perform position control.

© ElectroCraft 2013 144 MPD User Manual

Choose Speed to program a speed profile. Set the values of the Acceleration rate and the Jog speed.
Select the measuring units from the lists on the right.

Remark: Speed profile option is active if the drive/motor is setup to perform speed control or position
control with speed loop closed.

Once set, the trapezoidal profile parameters are memorized. If you intend to use the same values as
previously defined for the acceleration rate, the slew or jog speed, the position increment or position to
reach you don’t need to set their values again in the following trapezoidal profiles. Use the checkboxes on
the left to uncheck those parameters that remain unchanged. When a parameter is unchecked, you don’t
need to give it a value.

Remark: The additive mode for relative positioning is not memorized and must be set each time a new
additive relative move is set.

Select Generate new trajectory starting from actual values of position and speed reference if you
want the reference generator to compute the motion profile starting from the actual values of the position
and speed reference. Use this option for example if successive standard relative moves must be
executed and the final target position should represent exactly the sum of the individual commands.
Select Generate new trajectory starting from actual values of load/motor position and speed if you
want the reference generator to compute the motion profile starting from the actual values of the
load/motor position and speed. When this option is used, at the beginning of each new motion profile, the
position and speed reference are updated with the actual values of the load/motor position and speed.
Use this option for example if during a motion an external input triggers a stop on a precise position
relative to the trigger point. Another situation to use this option is at recovery from an error or any other
condition that disables the motor control while the motor is moving. Updating the reference values leads
to a “glitch” free recovery because it eliminates the differences that may occur between the actual
load/motor position/speed and the last computed position/speed reference (before disabling the motor
control).

Remark: In open loop control of steppers, this option is ignored because there is no position and/or
speed feedback.

Choose Execute Immediate to start the programmed motion immediately when the motion sequence is
executed. Check Then wait until motion is completed if you want to postpone the start of the following
motion until this programmed motion is completed.

Remark: Verify the motion complete condition parameters. If these are incorrectly set, you may never
reach the motion complete condition:

• POSOKLIM – the settle band tolerance, expressed in internal position units

• TONPOSOK – the stabilize time, expressed in internal time units

• UPGRADE.11:

� 1 = uses the above parameters,

� 0 = sets motion complete when the reference generator has completed the trajectory and has arrived to
the commanded position

If these parameters have not been set previously, check their default value. Reset the drive/motor and
using the command interpreter get their value.

Choose Execute On event to start this new motion when a programmable event occurs. Click Change
Event to select the event type or Edit Event to modify the parameters of the selected event (see Events
for details). Select Setup motion data, but don’t start execution if you want only to set the motion
parameters without starting the execution.

© ElectroCraft 2013 145 MPD User Manual

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

Trapezoidal Position Profiles – MPL Programming Details

Trapezoidal Speed Profiles – MPL Programming Details

Trapezoidal Position Profiles – Related MPL Instructions and Data

Trapezoidal Speed Profiles – Related MPL Instructions and Data

Motion Programming

Internal Units and Scaling Factors

© ElectroCraft 2013 146 MPD User Manual

6.1.3. Motion S-Curve Profile

The “Motion – S-curve Profiles” dialogue allows you to program a position profile with an S-curve shape
of the speed. This shape is due to the jerk limitation, leading to a trapezoidal or triangular profile for the
acceleration and an S-curve profile for the speed.

In the S-curve profile, the load/motor is controlled in position. You specify either a position to reach in
absolute mode or a position increment in relative mode, plus the slew (maximum travel) speed, the
maximum acceleration/deceleration rate and the jerk rate.

An S-curve profile must begin when load/motor is not moving. During motion the parameters should not
be changed. Therefore when executing successive S-curve commands, you should wait for the previous
motion to end before setting the new motion parameters and starting next motion. During an S-curve
execution, you can switch at any moment to another motion mode (except PVT and PT interpolated
modes) or stop the motion with a STOP command.

I

IMPORTANT: Some setup configurations foresee a transmission ratio between the motor and the load. In
these cases, the load position and speed are different from the motor position and speed. The motion
parameters refer always to the load trajectory.

Choose the option Relative to program a relative positioning or Absolute for an absolute positioning. Set
the values of the Jerk, Acceleration rate and the Slew speed. Select the measuring units from the lists
on the right. In the absolute positioning mode, set the value of the Position to reach. In the relative
positioning, set the value of the Position increment.

Remarks:

• The reference generator actually uses the jerk time to compute the profile. This is computed as the
ratio between the acceleration rate and the jerk rate you provided and must be a positive integer
number, in internal time units. If the jerk value is too low, the jerk time may be zero. In this case you’ll
get the error message “Jerk parameter must be greater than zero!”

• The S-curve requires the drive/motor to be setup for position control. Otherwise, in the Motion view, the
button opening this dialogue will not occur.

© ElectroCraft 2013 147 MPD User Manual

Select Decelerate at STOP command with a limited jerk if you want a smooth deceleration, using an
S-curve speed profile in case of a STOP command. Select Decelerate at STOP command in shortest
time if you want a faster deceleration, using a trapezoidal speed profile in case of a STOP command.

Choose Execute Immediate to start the programmed motion immediately when the motion sequence is
executed. Check Then wait until motion is completed if you want to postpone the start of the following
motion until this programmed motion is completed. If the next motion is an S-curve too, checking this
option is mandatory.

Remark: Verify the motion complete condition parameters. If these are incorrectly set, you may never
reach the motion complete condition:

• POSOKLIM – the settle band tolerance, expressed in internal position units

• TONPOSOK – the stabilize time, expressed in internal time units

• UPGRADE.11:

� 1 = uses the above parameters,

� 0 = sets motion complete when the reference generator has completed the trajectory and has arrived to
the commanded position

If these parameters have not been set previously, check their default value. Reset the drive/motor and
using the command interpreter get their value.

Choose Execute On event to start this new motion when a programmable event occurs. Click Change
Event to select the event type or Edit Event to modify the parameters of the selected event (see Events
for details). Select Setup motion data, but don’t start execution if you want only to set the motion
parameters without starting the execution.

 OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

 See also:

S-Curve Profiles – MPL Programming Details

S-Curve Profiles – Related MPL Instructions and Data

Motion Programming

Internal Units and Scaling Factors

© ElectroCraft 2013 148 MPD User Manual

6.1.4. Motion PT

The “Motion – PT” dialogue allows you to program a positioning path described through a series of points.
Each point specifies the desired Position and Time, i.e. contains a PT data. Between the points the built-
in reference generator performs a linear interpolation.

In the PT mode the load/motor is controlled in position. A PT sequence must begin when load/motor is
not moving.

The PT mode is typically used together with a host, which sends PT points via a communication channel.
Due to the interpolation, the PT mode offers the possibility to describe arbitrary position contours using a
reduced number of points. It is particularly useful when the motion reference is computed on the fly by the
host, like for example, in vision systems. By reducing the number of points, both the computation power
and the communication bandwidth needed are substantially reduced optimizing the costs. When the PT
motion mode is used simultaneously with several drives/motors having the time synchronization
mechanism activated, the result is a very powerful multi-axis system that can execute complex
synchronized moves.

Upon reception, each PT point is stored in a reception buffer. The reference generator empties the buffer
as the PT points are executed. The drive/motor automatically sends warning messages when the buffer is
full, low or empty. The buffer full condition occurs when the number of PT points in the buffer is equal
with the buffer size. The buffer low condition occurs when the number of PT points in the buffer is less or
equal with a programmable value. The buffer empty condition occurs when the buffer is empty and the
execution of the last PT point is over.

Remarks:

• The PT buffer size is programmable and if needed can be substantially increased. By default it is set to
7 PT points.

• The buffer low condition is set by default when the last PT point from the buffer is read and starts to be
executed

• After the execution of the last PT point from a sequence the drive/motor keeps the last reference
position, waiting for the next PT commands.

• The PT mode requires the drive/motor to be setup for position control. Otherwise, in the Motion view,
the button opening this dialogue will not occur.

The “Motion – PT” dialogue was specifically created to help you quickly evaluate, in advance, a PT
sequence of points. The included graphical plot shows you the interpolated trajectory allowing you to
check the results. Moreover, you can execute the whole sequence of PT points and check your
application behavior before implementing the PT handshake on your host.

© ElectroCraft 2013 149 MPD User Manual

You can introduce the PT points in 2 ways:

• One by one, by setting for each point its Position and Time values. Both are relative to the beginning
of the PT motion. Select the measuring units from the list on the right. The graphical tool included, will
automatically update the evolution of the position after each point change. A red spot, indicates the
active point. Use buttons: Remove, Update, Insert, << and >> to navigate between the PT points and
modify them.

• With Import From File to insert a set of PT points previously defined. The file format is a simple text
with 2 columns separated by space or tabs representing from left to right: position and time values. The
number of rows gives the number of PT points

Check Host address and set your PC/host address if the drive/motor is connected via CANbus with your
host. The host address is where the PT messages regarding buffer status are sent.

Remark: By default, the host address is initialized with the same value as the drive/motor address, plus
the host bit set. This causes to send the PT messages via RS-232 link.

Check Clear PT Buffer to erase all the previously stored points from the PT buffer. Use this option each
time when you initiate a new PT motion. Uncheck this option if the execution of the PT points was
interrupted and you want to resume the execution of the remaining points.

Select Generate new trajectory starting from actual values of position and speed reference if you
want the reference generator to compute the PT motion path starting from the actual value of the position

© ElectroCraft 2013 150 MPD User Manual

reference (the speed reference is always considered zero). Select Generate new trajectory starting
from actual values of load/motor position and speed if you want the reference generator to compute
the PVT motion starting from the actual value of the load/motor position. When this option is used, the
position and speed reference are updated with the actual values of the load/motor position and speed.
Use this option for example at recovery from an error or any other condition that disables the motor
control while the motor is moving. Updating the reference values leads to a “glitch” free recovery because
it eliminates the differences that may occur between the actual load/motor position/speed and the last
computed position/speed reference (before disabling the motor control).

Remark: In open loop control of steppers, this option is ignored because there is no position and/or
speed feedback.

Choose Execute Immediate to start the programmed motion immediately when the motion sequence is
executed. Check Then wait until motion is completed if you want to postpone the start of the following
motion until this programmed motion is completed.

Remark: Verify the motion complete condition parameters. If these are incorrectly set, you may never
reach the motion complete condition:

• POSOKLIM – the settle band tolerance, expressed in internal position units

• TONPOSOK – the stabilize time, expressed in internal time units

• UPGRADE.11:

� 1 = uses the above parameters,

� 0 = sets motion complete when the reference generator has completed the trajectory and has arrived to
the commanded position

If these parameters have not been set previously, check their default value. Reset the drive/motor and
using the command interpreter get their value.

Choose Execute On event to start this new motion when a programmable event occurs. Click Change
Event to select the event type or Edit Event to modify the parameters of the selected event (see Events
for details).

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

PT – MPL Programming Details

PT – Related MPL Instructions and Data

Motion Programming

Internal Units and Scaling Factors

© ElectroCraft 2013 151 MPD User Manual

6.1.5. Motion PVT

The “Motion – PVT” dialogue allows you to program a positioning path described through a series of
points. Each point specifies the desired Position, Velocity and Time, i.e. contains a PVT data. Between
the points the built-in reference generator performs a 3rd order interpolation.

In the PVT mode the load/motor is controlled in position. A PVT sequence must begin when load/motor is
not moving and must end with a last PVT point having velocity zero.

The PVT mode is typically used together with a host, which sends PVT points via a communication
channel. Due to the 3 rd order interpolation, the PVT mode offers the possibility to describe complex
position contours using a reduced number of points. It is particularly useful when the motion reference is
computed on the fly by the host, like for example, in vision systems. By reducing the number of points,
both the computation power and the communication bandwidth needed are substantially reduced
optimizing the costs. When the PVT motion mode is used simultaneously with several drives/motors
having the time synchronization mechanism activated, the result is a very powerful multi-axis system that
can execute complex synchronized moves.

Upon reception, each PVT point is stored in a reception buffer. The reference generator empties the
buffer as the PVT points are executed. The drive/motor automatically sends warning messages when the
buffer is full, low or empty. The buffer full condition occurs when the number of PVT points in the buffer is
equal with the buffer size. The buffer low condition occurs when the number of PVT points in the buffer is
less or equal with a programmable value. The buffer empty condition occurs when the buffer is empty and
the execution of the last PVT point is over.

Remarks:

• The PVT buffer size is programmable and if needed can be substantially increased. By default it is set
to 7 PVT points.

• The buffer low condition is set by default when the last PVT point from the buffer is read and starts to
be executed

• The normal end of a PVT sequence means: buffer empty condition and velocity zero of the last PVT
point executed. If the velocity is not zero, the drive/motor enters in quick stop mode and stops using the
quick stop deceleration rate.

• The PVT mode requires the drive/motor to be setup for position control. Otherwise, in the Motion view,
the button opening this dialogue will not occur.

When PVT mode is used, a key factor for getting a correct positioning path is to set correctly the distance
in time between the points. Typically this is 10-20ms, the shorter the better. If the distance in time
between the PVT points is too big, the 3rd order interpolation may lead to important variations compared
with the desired path.

The “Motion – PVT” dialogue was specifically created to help you quickly evaluate, in advance, the results
of the 3rd order interpolation applied to your data. The included graphical plot shows you the interpolation
results for both position and speed reference allowing to check if with the data provided the results are
correct. Moreover, you can execute the whole sequence of PVT points and check your application
behavior before implementing the PVT handshake on your host.

© ElectroCraft 2013 152 MPD User Manual

You can introduce the PVT points in 2 ways:

• One by one, by setting for each point its Position, Velocity and Time values. Both Position and Time
values are relative to the beginning of the PVT motion. Select the measuring units from the list on the
right. The graphical tool included, will automatically update the evolution of the position and speed after
each point change. A red spot, indicates the active point. Use buttons: Remove, Update, Insert, <<
and >> to navigate between the PVT points and modify them.

• With Import From File to insert a set of PVT points previously defined. The file format is a simple text
with 3 columns separated by space or tabs representing from left to right: position, velocity and time
values. The number of rows gives the number of PVT points

Check Host address and set your PC/host address if the drive/motor is connected via CANbus with your
host. The host address is where the PVT messages regarding buffer status are sent.

Remark: By default, the host address is initialized with the same value as the drive/motor address, plus
the host bit set. This causes to send the PVT messages via RS-232 link.

Check Clear PVT Buffer to erase all the previously stored points from the PVT buffer. Use this option
each time when you initiate a new PVT motion. Uncheck this option if the execution of the PVT points
was interrupted and you want to resume the execution of the remaining points.

Select Generate new trajectory starting from actual values of position and speed reference if you
want the reference generator to compute the PVT motion path starting from the actual value of the

© ElectroCraft 2013 153 MPD User Manual

position reference (the speed reference is always considered zero). Select Generate new trajectory
starting from actual values of load/motor position and speed if you want the reference generator to
compute the PVT motion starting from the actual value of the load/motor position. When this option is
used, the position and speed reference are updated with the actual values of the load/motor position and
speed. Use this option for example at recovery from an error or any other condition that disables the
motor control while the motor is moving. Updating the reference values leads to a “glitch” free recovery
because it eliminates the differences that may occur between the actual load/motor position/speed and
the last computed position/speed reference (before disabling the motor control).

Remark: In open loop control of steppers, this option is ignored because there is no position and/or
speed feedback.

Choose Execute Immediate to start the programmed motion immediately when the motion sequence is
executed. Check Then wait until motion is completed if you want to postpone the start of the following
motion until this programmed motion is completed.

Remark: Verify the motion complete condition parameters. If these are incorrectly set, you may never
reach the motion complete condition:

• POSOKLIM – the settle band tolerance, expressed in internal position units

• TONPOSOK – the stabilize time, expressed in internal time units

• UPGRADE.11

� 1 = uses the above parameters,

� 0 = sets motion complete when the reference generator has completed the trajectory and
has arrived to the commanded position

If these parameters have not been set previously, check their default value. Reset the drive/motor and
using the command interpreter get their value.

Choose Execute On event to start this new motion when a programmable event occurs. Click Change
Event to select the event type or Edit Event to modify the parameters of the selected event (see Events
for details). Select Setup motion data, but don’t start execution if you want only to set the motion
parameters without starting the execution.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

PVT – MPL Programming Details

PVT – Related MPL Instructions and Data

Motion Programming

Internal Units and Scaling Factors

© ElectroCraft 2013 154 MPD User Manual

6.1.6. Motion External

The “Motion - External” dialogue allows you to program the drives/motors to work with an external
reference provided by another device. There are 3 types of external references:

• Analogue – read by the drive/motor via a dedicated analogue input (10-bit resolution)

• Digital – computed by the drive/motor from:

� Pulse & direction signals

� Quadrature signals like A, B signals of an incremental encoder

• Online – received online via a communication channel from a host and saved in a dedicated
MPL variable

Select Analogue if the external reference is an analogue signal. This signal is interpreted as a:

• Position reference, if the drive/motor was setup for position control

• Speed reference, if the drive/motor was setup for speed control

• Current/torque reference, if the drive/motor was setup for torque control

Remark: Check the drive/motor setup for the correspondence between the analogue input voltage and
the reference values.

In position control, check Limit maximum speed at and set a desired value, if you want to avoid
mechanical shocks by limiting the maximum speed at sudden changes of the position reference. In speed

© ElectroCraft 2013 155 MPD User Manual

control, check Limit maximum acceleration at and set a desired value, if you want a smoother transition
at sudden changes of the speed reference. In torque control, check Update torque in fast loop if you
want to read the analogue input at each fast loop sampling period. When unchecked, the analogue input
is read at each slow loop sampling period.

Select Digital if the external reference is provided as pulse & direction or quadrature encoder signals. In
either case, the drive/motor performs a position control with the reference computed from the external
signals. Check Set/Change gear ratio if you want to follow the external position reference with a
different ratio than 1:1. Set the desired Slave / Master ratio.

Remarks:

• A 1:3 ratio means that the actual position reference TPOS is 1/3 of the external reference.

• Due to an automatic compensation procedure, the actual position reference is computed
correctly without cumulating errors, even if the ratio is an irrational number like 1: 3

Select Online if an external device sends the reference via a communication channel. Depending on the
Control Mode chosen, the external reference is saved in one of the MPL variables:

• EREFP, which becomes the position reference if the Control Mode selected is Position

• EREFS, which becomes the speed reference if the Control Mode selected is Speed

• EREFT, which becomes the torque reference if the Control Mode selected is Torque

• EREFV, which becomes voltage reference if the Control Mode selected is Voltage

If the external device starts sending the reference AFTER the external online mode is activated, it may be
necessary to initialize EREFP, EREFS, EREFT or EREFV. Check Set the initial value to set the desired
starting value.

Remarks:

• The external online mode may also be used as a test mode in which you assign in EREFP,
EREFS, EREFT or EREFV the desired reference

• Use external online voltage mode with caution. If the motor is moving, an abrupt reduction of the
voltage reference may lead to a high peak of regenerated energy injected into the DC supply.
Without proper surging capacity, this may cause high over-voltages

Choose Execute Immediate to activate the external reference mode immediately when the motion
sequence is encountered. Choose Execute On Event to activate the external reference when a
programmable event occurs. Click Change Event to select the event type or Edit Event to modify the
parameters of the selected event (see Events for details). Select Setup motion data, but don’t start
execution if you want to set the external reference mode parameters for a later use.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

External –MPL Programming Details

External –MPL Instructions and Data

Motion Programming

© ElectroCraft 2013 156 MPD User Manual

Internal Units and Scaling Factors

© ElectroCraft 2013 157 MPD User Manual

6.1.7. Motion Electronic Gearing

The “Motion – Electronic Gearing” dialogue allows you to set a drive/motor as master or a slave for
electronic gearing mode.

When set as master, a drive/motor sends its position via a multi-axis communication channel, like the
CANbus. The master sends either the load position or the position reference once at each slow loop
sampling time interval.

When set as slave, a drive/motor follows the master position with a programmable ratio. The slaves can
get the master position in two ways:

1. Via a communication channel, from a drive/motor set as master

2. Via an external digital reference of type pulse & direction or quadrature encoder. Both options have
dedicated inputs. The pulse & direction signals are usually provided by an indexer and must be
connected to the pulse & direction inputs of the drive/motor. The quadrature encoder signals are
usually provided by an encoder on the master and must be connected to the 2nd encoder inputs.

Remark: In case 2, you don’t need to program a drive/motor as master in electronic gearing

Select Master tab to set a drive/motor as master in electronic gearing.

© ElectroCraft 2013 158 MPD User Manual

If the master sends its position to a single drive/motor, check the Axis ID and fill the associated field with
the axis ID of the slave. If the master sends its position to more drives, indicate the Group ID of the
slaves. Select one groups of drives (1 to 8) to which the master should send its position.

Remark: You need to specify the Axis ID or the Group ID where master sends its position only the first
time (after power on) when a drive is set as master. If the master mode is later on disabled, then enabled
again, there is no need to set again the Axis ID or the Group ID, as long as they remain unchanged. In
this case, just uncheck both the Axis ID and the Group ID.

Select Feedback, to set the master sending its load position, or Reference, for sending its position
reference.

Remark: The feedback option is disabled if the master operates in open loop. It is meaningless if the
master drive has no position sensor.

Check Synchronization to activate the synchronization procedure between the master and the slave
axes. Select Send synchronization messages and set the time interval between synchronization
messages. Recommended starting value is 20ms. When synchronization procedure is active, the
execution of the control loops on the slaves is synchronized with those of the master within a 10µs time
interval. Due to this powerful feature, drifts between master and slave axes are eliminated. Select Don’t
send synchronization to disable the synchronization procedure.

If the master activation is done AFTER the slaves are set in electronic gearing mode, check Initialize
slave(s) axis with master position. This determines the master to send an initialization message to the
slaves.

Check Enable operation to activate the master mode and start the sending of master position to the
slaves. Check Disable operation to deactivate the master mode and stop sending of master position to
the slaves. Note that enabling or disabling master operation has no effect on the motion executed by the
master.

Choose Execute Immediate to enable the slave operation mode immediately when the motion sequence
is encountered. Choose Execute On Event to start the slave operation mode when a programmable
event occurs. Click Change Event to select the event type or Edit Event to modify the parameters of the
selected event (see Events for details). Select Setup motion data, but don’t start execution if you
want to prepare the slave operation mode for a later execution.

© ElectroCraft 2013 159 MPD User Manual

Select Slave tab to set a drive/motor as slave in electronic gearing.

Check Gear Ratio to set/change the gear ratio with which the slave follows the master position. The gear
ratio is specified as a ratio of 2 integer values: Slave / Master. The slave value is signed, while the
master one is unsigned. The sign indicates the direction of movement: positive – same as the master,
negative – reversed to the master.

Remarks:

• Slave=1 and Master=3, means that slave does 1/3 of master displacement and its speed is 1/3 of
the master speed

• Due to an automatic compensation procedure, the slave reference is computed correctly without
cumulating errors, even if the ratio is an irrational number like 1: 3

Check Master Resolution to specify the number of encoder counts per one revolution of the master
motor. The slaves need the master resolution to compute correctly the master position and speed (i.e.
position increment). Select Full range if master position is not cyclic (e.g. the resolution is equal with the
whole 32-bit range of position). In this case the master resolution is set to value 0x80000001.

Check Enable operation with master position and select how to get the master position: via
communication or via an external reference. Leave unchecked if you want to set the slave parameters
without enabling slave operation mode.

© ElectroCraft 2013 160 MPD User Manual

Check Superposition with other motions and select On or Off to enable or disable the superposition of
the electronic gearing mode with a second motion mode. When this superposed mode activated, the
position reference is computed as the sum of the position references for each of the 2 superposed
motions.

You may enable the superposed mode at any moment, independently of the activation/deactivation of the
electronic gearing slave. If the superposed mode is activated during an electronic gearing motion, any
subsequent motion mode change is treated as a second move to be superposed over the basic electronic
gearing move, instead of replacing it. If the superposed mode is activated during another motion mode, a
second electronic gearing mode will start using the motion parameters previously set. This move is
superposed over the first one. After the first move ends, any other subsequent motion will be added to the
electronic gearing.

When you disable the superposed mode, the electronic gearing slave move is stopped and the
drive/motor executes only the other motion. If you want to remain in the electronic gearing slave mode,
set first the electronic gearing slave move and then disable the superposed mode.

Check Limit maximum acceleration at, to smooth slave coupling with the master, when this operation is
done with master running at high speed. This option limits the slave acceleration during coupling to the
programmed value.

Remark: Bit 12 from the Status Register High is set (SRH.12 = 1), when slave coupling with the master is
complete. The same bit is reset to zero if the slave is decoupled from the master. The bit has no
significance in other motion modes.

Select Generate new trajectory starting from actual values of position and speed reference if you
want the reference generator to compute the slave position starting from the actual values of the position
and speed reference. Select Generate new trajectory starting from actual values of load/motor
position and speed if you want the reference generator to compute the slave position starting from the
actual values of the load/motor position and speed.

Choose Execute Immediate to enable the slave operation mode immediately when the motion sequence
is encountered. Choose Execute On Event to start the slave operation mode when a programmable
event occurs. Click Change Event to select the event type or Edit Event to modify the parameters of the
selected event (see Events for details). Select Setup motion data, but don’t start execution if you
want to prepare the slave operation mode for a later execution.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page

See also:

Electronic Gearing – MPL Programming Details

Electronic Gearing – MPL Instruction and Data

Motion Programming

Internal Units and Scaling Factors

© ElectroCraft 2013 161 MPD User Manual

6.1.8. Motion Electronic Camming

The “Motion – Electronic Camming” dialogue allows you to set a drive/motor as master or slave for
electronic camming mode.

When set as master, a drive/motor sends its position via a multi-axis communication channel, like the
CAN bus. The master sends either the load position or the position reference once at each slow loop
sampling time interval.

When set as slave, a drive/motor executes a cam profile function of the master position. The cam profile
is defined by a cam table – a set of (X, Y) points, where X is cam table input i.e. the master position and Y
is the cam table output i.e. the corresponding slave position. Between the points the drive/motor
performs a linear interpolation. Using Cam Tables Selection selection you can associate cam tables to
your application. These may be visualized and modified using the Cam Tables Edit. You may also import
cam tables. The required format is: text file with 2 columns, one for X, and the other for Y, separated by
space or tab. Data must be in internal units.

The slaves can get the master position in two ways:

1. Via a communication channel, from a drive/motor set as master

2. Via an external digital reference of type pulse & direction or quadrature encoder. Both options have
dedicated inputs. The pulse & direction signals are usually provided by an indexer and must be
connected to the pulse & direction inputs of the drive/motor. The quadrature encoder signals are
usually provided by an encoder on the master and must be connected to the 2nd encoder inputs.

Remark: For 2nd option you don’t need to program a drive/motor as master in electronic camming

© ElectroCraft 2013 162 MPD User Manual

Select Master tab to set a drive/motor as master in electronic camming.

If the master sends its position to a single drive/motor, check the Axis ID and fill the associated field with
the axis ID of the slave. If the master sends its position to more drives, indicate the Group ID of the
slaves. Select one group of drives (1 to 8) to which the master should send its position.

Remark: You need to specify the Axis ID or the Group ID where master sends its position only the first
time (after power on) when a drive is set as master. If the master mode is later on disabled, then enabled
again, there is no need to set again the Axis ID or the Group ID, as long as they remain unchanged. In
this case, just uncheck both the Axis ID and the Group ID.

Select Feedback, to set the master sending its load position, or Reference, for sending its position
reference.

Remark: The feedback option is disabled if the master operates in open loop. It is meaningless if the
master drive has no position sensor.

Check Synchronization to activate the synchronization procedure between the master and the slave
axes. Select Send synchronization messages and set the time interval between synchronization
messages. Recommended starting value is 20ms. When synchronization procedure is active, the
execution of the control loops on the slaves is synchronized with those of the master within a 10µs time
interval. Due to this powerful feature, drifts between master and slave axes are eliminated. Select Don’t
send synchronization to disable the synchronization procedure.

© ElectroCraft 2013 163 MPD User Manual

Check Enable operation to activate the master mode and start the sending of master position to the
slaves. Check Disable operation to deactivate the master mode and stop sending of master position to
the slaves. Note that enabling or disabling master operation has no effect on the motion executed by the
master.

Choose Execute Immediate to enable the slave operation mode immediately when the motion sequence
is encountered. Choose Execute On Event to start the slave operation mode when a programmable
event occurs. Click Change Event to select the event type or Edit Event to modify the parameters of the
selected event (see Events for details). Select Setup motion data, but don’t start execution if you want
to prepare the slave operation mode for a later execution.

Select Slave tab to set a drive/motor as slave in electronic camming.

Select the camming mode:

• In Relative mode, the output of the cam table represents for the slave a position increment, which
is added to its actual position

• In Absolute mode, the output of the cam table represents for the slave the position to reach.

© ElectroCraft 2013 164 MPD User Manual

Remark: The absolute mode may generate abrupt variations on the slave position reference, mainly at
entry in the camming mode. Check Limit maximum speed at to limit the speed of the slave during travel
towards the position to reach.

Check Use CAM table and choose between the selected cam tables which one to use.

Remark: Note that at runtime, all the selected cam tables are loaded into the drive memory. If needed,
you may switch between the cam tables loaded. This operation means just to change the value of the
CAMSTART parameter which points towards the active cam table.

Check Offset from master in IU to shift the cam profile versus the master position, by setting a cam
offset for each slave. The cam table input is computed as the master position minus the cam offset. For
example, if a cam table is defined between angles 100 to 250 degrees, a cam offset of 50 degrees will
make the cam table to execute between master angles 150 and 300 degrees.

Check Multiply table input with to compress/extend a cam table input. Specify the input correction
factor by which the cam table input is multiplied. For example, an input correction factor of 2, combined
with a cam offset of 180 degrees, will make possible to execute a cam table defined for 360 degrees of
the master in the last 180 degrees.

Check Multiply table output with in order to compress/extend a cam table output. Specify the output
correction factor by which the cam table output is multiplied. This feature addresses the applications
where the slaves must execute different position commands at each master cycle, all having the same
profile defined through a cam table. In this case, the drive/motor is programmed with a unique normalized
cam profile and the cam table output is multiplied with the relative position command updated at each
master cycle.

Check Enable operation with master position and select how to get the master position: via
communication or via an external reference. Leave unchecked if you want to set the slave parameters
without enabling slave operation mode.

Check Master Resolution to specify the number of encoder counts per one revolution of the master
motor. The slaves need the master resolution to compute correctly the master position and speed (i.e.
position increment). Select Full range if master position is not cyclic (e.g. the resolution is equal with the
whole 32-bit range of position). In this case the master resolution is set to value 0x80000001.

Select Generate new trajectory starting from actual values of position and speed reference if you
want the reference generator to compute the slave position starting from the actual values of the position
and speed reference. Select Generate new trajectory starting from actual values of load/motor
position and speed if you want the reference generator to compute the slave position starting from the
actual values of the motor position and speed.

Choose Execute Immediate to enable the slave operation mode immediately when the motion sequence
is encountered. Choose Execute On Event to start the slave operation mode when a programmable
event occurs. Click Change Event to select the event type or Edit Event to modify the parameters of the
selected event (see Events for details). Select Setup motion data, but don’t start execution if you want
to prepare the slave operation mode for a later execution.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page

See also:

Cam Tables Selection

© ElectroCraft 2013 165 MPD User Manual

Cam Tables Edit

Electronic Camming – MPL Programming details

Electronic Camming –MPL Instruction and Data

Motion Programming

Internal Units and Scaling Factors

© ElectroCraft 2013 166 MPD User Manual

6.1.9. Motor Commands

The “Motion - Motor Commands” dialogue allows you to apply one of following commands to the motor:

• Activate/deactivate the control loops and the power stage PWM output commands (AXISON /
AXISOFF)

• Stop the motor with deceleration set in MPL parameter CACC

• Change the value of the motor position and position reference

• Set deceleration rate for quick stops

Select Activate the control loops and PWM outputs (AXISON) to restore normal drive operation after
an AXISOFF command. Typically, this situation occurs at recovery from an error, following the fault reset
command FAULTR, or after the drive/motor ENABLE input goes from status disabled to status enabled.

Select Deactivate the control loops and PWM outputs (AXISOFF) when a fault condition is detected,
for example when a protection is triggered. This command disables the motor control (all the control
loops), all the PWM output commands for the power stage (all the switching devices are off) and also the
reference generator.

Fault conditions trigger MPL interrupts. Each drive/motor has a built-in set of MPL interrupt service
routines (ISR) which are automatically activated after power-on. In these routines, the default action for
fault conditions is an AXISOFF command. If needed, you may replace any built-in ISR with your own ISR
and thus, adapt the fault treatment to your needs.

After a fault condition, the actual values of the load position and speed (which continue to be measured
during the AXISOFF condition) may differ quite a lot from the values of the target position and speed as
were last computed by the reference generator before entering in the AXISOFF condition. Therefore, a
correct fault recovery sequence involves the following steps:

© ElectroCraft 2013 167 MPD User Manual

• Set the motion mode, even if it is the same. Motion mode commands, automatically set the target
update mode zero (TUM0), which updates the target position and speed with the actual measured
values of the load position and speed

• Execute update command UPD

• Execute AXISON command

Remark:

• In the Drive Status control panel, SRL.15 shows the AXISON/AXISOFF condition and SRH.15
shows a fault condition

• In MotionPRO Developer, ENDINIT and AXISON commands are automatically included in the MPL
program, just before your first MPL command from the main section. Therefore you don’t need to
include them in your motion program.

Select STOP to stop the motor with the deceleration rate set in MPL parameter CACC. The drive/motor
decelerates following a trapezoidal position or speed profile. If the STOP command is issued during the
execution of an S-curve profile, the deceleration profile may be chosen between a trapezoidal or an S-
curve profile (see S-curve dialogue settings). You can detect when the motor has stopped by setting a
motion complete event and waiting until the event occurs. The STOP command can be used only when
the drive/motor is controlled in position or speed.

Remarks:

• In order to restart after a STOP command, you need to set again the motion mode. This operation
disables the stop mode and allows the motor to move

• When STOP command is sent via a communication channel, it will automatically stop any MPL
program execution, to avoid overwriting the STOP command from the MPL program

Choose Immediate Update to generate an update command UPD. When this command is received, the
last motion mode programmed together with the latest motion parameters are taken into consideration.
The immediate update command is available in all the dialogues setting a motion mode and normally it is
called from these dialogues. The immediate update command is useful when the motion mode is set in
advance for a later execution, which is started with a separate update command. In a similar way you
may use Update on event.

You can set / change the referential for position measurement by changing simultaneously the load
position APOS and the target position TPOS values, while keeping the same position error any moment
during motion. Use the edit field from set actual position value to specify the new motor position value.

Remark: In the case of steppers controlled in open loop, this command changes only the target position
TPOS to the desired value.

The deceleration rate for quick stops can be set/change selecting the option Set quick stop
deceleration rates. To assign an immediate value select option value and fill the associated field, if you
want to assign the value of a variable select then variable and in the associated field write the name of
the variable.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

© ElectroCraft 2013 168 MPD User Manual

Motor Commands – MPL Programming Details

Motor Commands – MPL Instructions and Data

Motion Programming

Internal Units and Scaling Factors

© ElectroCraft 2013 169 MPD User Manual

6.1.10. Motion Position Triggers

The “Motion - Position Triggers” dialogue allows you to define 4 position trigger points. A position trigger
is a position value with which the actual position is continuously compared. The compare result is shown
in the Status Register High (SRH). If the actual position is below a position trigger, the corresponding bit
from SRH is set to 0, else it is set to 1. You can change at any moment the value of a position trigger.

The actual position that is compared with the position triggers is:

• The Load position feedback (MPL variable APOS_LD) for configurations with position sensor

• The position reference (MPL variable TPOS – Target position) in the case of steppers controlled in
open-loop

Remark: The position triggers can be used to monitor the motion progress. If this operation is done from
a host, you may program the drive/motor to automatically issue a message towards the host, each time
when the status of a position trigger is changed.

See also:

Position Triggers – MPL Programming Details

Position Triggers – Related MPL Instructions and Data

Motion Programming

Internal Units and Scaling Factors

© ElectroCraft 2013 170 MPD User Manual

6.1.11. Motion Homing

The “Motion – Homing” dialogue allows you choose a homing procedure and set its parameters. The
homing is a sequence of motions, usually executed after power-on, through which the load is positioned
into a well-defined point – the home position. Typically, the home position is the starting point for normal
operation.

The search for the home position can be done in numerous ways. Therefore, a lot of homing procedures
are possible. ElectroCraft provides for each programmable drive/motor a collection of up to 32 homing
procedures. These are predefined MPL functions, which you may call after setting the homing
parameters. You may use these homing procedures as they are, or you may modify them according with
your application needs. From the list with all the defined homing procedures you can choose one or
several to be used in your application. This represents the list of selected homing procedures.

Check Select homing parameters to set the following values:

• Acceleration/deceleration rate for the position or speed profiles done during homing

• Deceleration rate for quick stop when a limit switch is reached

• High/normal speed for the position or speed profiles done during homing

• Low speed for the final approach towards the home position

• New home position set at the end of the homing procedure

Check Execute homing mode and choose a homing procedure from the list of the selected homing
procedures. During the execution of a homing sequence SRL.8 = 1. Hence you can find when a homing
sequence ends, either by monitoring bit 8 from SRL or by programming the drive/motor to send a
message to your host when SRL.8 changes. As long as a homing sequence is in execution, you should
not start another one. If this happens, the last homing is aborted and a warning is generated by setting
SRL.7 = 1.

© ElectroCraft 2013 171 MPD User Manual

Remark: You can abort a homing sequence execution at any moment using MPL command ABORT (see
Decisions).

You can also use this dialogue to read the status of the home input. The home input is one of the
drive/motor inputs, which is used by the homing procedures. The home input is specific for each product
and based on the setup data, MotionPRO Developer automatically generates the MPL code for reading
the correct input. Check Read home input in the variable and fill the associated field with the name of
the variable. After execution, the value of the variable will be 0 if the home input is zero (low) or 1 if the
home input is 1 (high).

Remark: The source of the motion sequence for reading the home input is general and independent. The
particular value of the home input, specific for each product, occurs only in the compiled version of this
motion sequence, in the MPL code generated. Therefore, you can safely import the source code of this
motion sequence into other applications where the target products have different home inputs.

OK: Close this dialogue and save the settings in your motion sequence list.

Cancel: Close this dialogue without saving the settings in your motion sequence list.

Help: Open this help page.

See also:

Homing – MPL Programming Details

Homing – Related MPL Instructions and data

Motion Programming

Internal Units and Scaling Factors

© ElectroCraft 2013 172 MPD User Manual

6.1.12. Motion Contouring

The “Motion - Contouring” dialogue allows you to program an arbitrary contour via a series of points.
Between the points, linear interpolation is performed, leading to a contour described by a succession of
linear segments. The contouring mode may be executed only from a MPL program. You can’t send
contouring points from a host via a communication channel, like in the case of the PT mode. Depending
on the control mode chosen, four options are available:

• Position contouring – the load/motor is controlled in position. The path represents a position
reference

• Speed contouring – the load/motor is controlled in speed. The path represents a speed
reference.

• Torque contouring – the motor is controlled in torque. The path represents a current reference.

• Voltage contouring – the motor is controlled in voltage. The path represents a voltage reference.

Each contour point is defined by 2 values: the reference and the time. The contouring mode has been
foreseen mainly for setup tests. However, you can also use the position contouring and the speed
contouring for normal operation, as part of your motion application. You can switch at any moment to and
from these 2 modes. The torque contouring and the voltage contouring have been foreseen only for setup
tests. The torque contouring may be used, for example, to check the response of the current controllers
to different input signals. Similarly, the voltage contouring may be used, for example, to check the motors
behavior under a constant voltage or any other voltage shape.

© ElectroCraft 2013 173 MPD User Manual

© ElectroCraft 2013 174 MPD User Manual

Choose

Position for a position contouring,

Speed for a speed contouring,

Torque for a torque contouring

Voltage for a voltage contouring.

Remarks:

• Position contouring option is disabled if the drive/motor is not setup for position control

• Speed contouring option is disabled if the drive/motor is not setup for speed control. This
includes the case when position control is performed without closing the speed loop

• Torque contouring option is disabled for stepper drives working in open loop

In the position contouring and the speed contouring the starting point has always the coordinates (0,0)
and corresponds to the moment when the contouring mode is activated. Therefore all the segments
values (time and reference) are relative to the starting point of the contouring. For example, lets
suppose that a position contouring sequence has one segment with coordinates (1s, 10 rot) and the
absolute position is 20 revolutions (initial position when the position contouring is activated). During the
contour segment execution, the motor moves 10 revolutions in 1 second and stops on absolute position
30 revolutions.

In the torque contouring and voltage contouring the starting point has by default the initial value 0.
However, you can also start with a different value, by setting in the first point a non-zero reference at time
= 0.

You can introduce the contouring points in 2 ways:

• One by one, by setting for each point its Time and Reference values. Select the measuring
units from the list on the right. The graphical tool included, will automatically update the contour
as you introduce each point. A red spot, indicates the active point. Use buttons: Remove,
Update, Insert, << and >> to navigate between the points and modify them.

• With Import From File to insert a set of contouring points previously defined. The file format is a
simple text with 2 columns separated by space or tabs representing from left to right: time and
reference values. The number of rows gives the number of points

Select Generate new trajectory starting from actual values of position and speed reference if you
want the reference generator to compute the contour profile starting from the actual values of the position
and speed reference. Select Generate new trajectory starting from actual values of load/motor
position and speed if you want the reference generator to compute the contour profile starting from the
actual values of the load/motor position and speed. When this option is used, at the beginning of each
new contour profile the position and speed reference is updated with the values of the load/motor position
and speed. Use this option for example at recovery from an error or any other condition that disables the
motor control while the motor is moving. Updating the reference values leads to a “glitch” free recovery
because it eliminates the differences that may occur between the actual load/motor position/speed and
the last computed position/speed reference (before disabling the motor control).

Remark: In open loop control of steppers, this option is ignored because there is no position and/or
speed feedback.

Choose Execute Immediate to start the contour profile immediately when the motion sequence is
encountered. Choose Execute On event to start the motion when a programmable event occurs. Click

© ElectroCraft 2013 175 MPD User Manual

Change Event to select the event type or Edit Event to modify the parameters of the selected event (see
Events for details).

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

Contouring – MPL Programming details

Contouring – MPL Instructions and Data

Motion Programming

Internal Units and Scaling Factors

© ElectroCraft 2013 176 MPD User Manual

6.1.13. Motion Test

The “Motion – Test” dialogue allows you to set the drives/motors in a special test configuration. This
configuration is not supposed to be used during normal operation, but only during drive/motor setup.

In the test mode, either a voltage or a torque (current) command can be set using a test reference
consisting of a limited ramp. For AC motors (like for example the brushless motors), the test mode offers
also the possibility to rotate a voltage or current reference vector with a programmable speed. As a result,
these motors can be moved in an “open-loop” mode without using the position sensor. The main
advantage of this test mode is the possibility to conduct in a safe way a series of tests, which can offer
important information about the motor parameters, drive status and the integrity of the its connections.

Select Voltage for voltage reference or Torque for torque reference. Insert the appropriate values for
reference amplitude and reference increment in the corresponding fields and select the measurement
unit.

For AC motors, check the option AC motor only. Insert the appropriate values for the reference vector
initial position and the electrical angle increment in the corresponding fields and select the measurement
unit.

Choose Execute Immediate to activate the external reference mode immediately when the motion
sequence is encountered. Choose Execute On Event to activate the external reference when a
programmable event occurs. Click Change Event to select the event type or Edit Event to modify the
parameters of the selected event (see Events for details). Select Setup motion data, but don’t start
execution if you want to prepare the external reference mode for a later use.

 OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

 See also:

© ElectroCraft 2013 177 MPD User Manual

Motion Test –MPL Programming details

Motion Test – Related MPL Instructions and Data

Motion Programming

Internal Units and Scaling Factors

© ElectroCraft 2013 178 MPD User Manual

6.1.14. Events Dialogue

The “Events” dialogue allows you to define events. An event is a programmable condition, which once
set, is monitored for occurrence. You can do the following actions in relation with an event:

1) Change the motion mode and/or the motion parameters, when the event occurs

2) Stop the motion when the event occurs

3) Wait for the programmed event to occur

Remark: The programmed event is automatically erased if the event is reached, if the timeout for the wait
is reached or if a new event is programmed.

Only a single event can be programmed at a time. This can be:

1) When the actual motion is completed

2) When motor absolute position is equal or under a value or the value of a variable

3) When motor absolute position is equal or over a value or the value of a variable

4) When load absolute position is equal or under a value or the value of a variable

5) When load absolute position is equal or over a value or the value of a variable

6) When load/motor relative position is equal or under a value or the value of a variable

7) When load/motor relative position is equal or over a value or the value of a variable

8) When motor speed is equal or under a value or the value of a variable

9) When motor speed is equal or over a value or the value of a variable

10) When load speed is equal or under a value or the value of a variable

11) When load speed is equal or over a value or the value of a variable

12) After a wait time equal with a value or the value of a variable

13) When position reference is equal or under a value or the value of a variable

14) When position reference is equal or over a value or the value of a variable

15) When speed reference is equal or under a value or the value of a variable

© ElectroCraft 2013 179 MPD User Manual

16) When speed reference is equal or over a value or the value of a variable

17) When torque reference is equal or under a value or the value of a variable

18) When torque reference is equal or over a value or the value of a variable

19) When 1st or 2nd encoder index goes low or high

20) When the positive limit switch goes low or high

21) When the negative limit switch goes low or high

22) When a digital input goes low

23) When a digital input goes high

24) When a 32-bit variable is equal or under a 32-bit value or the value of another 32-bit variable

25) When a 32-bit variable is equal or over a 32-bit value or the value of another 32-bit variable

Remark: The load/motor relative position is computed starting from the beginning of the current
movement.

You can also program events in the following motion dialogues: Trapezoidal Profiles, S-curve Profiles,
PT, PVT, External, Electronic Gearing, Electronic Camming, Contouring, Test. Set events in these
dialogues, if you want to activate the programmed motion mode and/or its motion parameters, when the
programmed event occurs.

The event programming is done in the same way when it is done from a motion dialogue or from this
dialogue. Press Change Event to open the Event Selection dialog which allows you to define the event /
condition to be monitored. If you have already defined an event, use Edit Event button to modify its
parameters or conditions.

When you set an event using one of the motion dialogues, you program the following operations:

• Definition of an event

• Programming of a new motion mode and/or new motion parameters

• Definition of the moment when the new motion mode and/or motion parameters must be updated
(e.g. enabled) as the moment when the programmed event will occur

Remark: After you have programmed a new motion mode and/or new motion parameters with update on
event, you need to introduce a wait until the programmed event occurs. Otherwise, the program will
continue with the next instructions that may override the event monitoring. In order to introduce a wait
until the programmed event occurs, open this dialogue, select as event None and check Wait until the
event occurs.

© ElectroCraft 2013 180 MPD User Manual

In this dialogue, apart from programming an event, you can Stop motion when the event occurs and
Wait until the event occurs by checking these options. You can also define a time limit for an event to
occur. Check Exit from the wait loop after a time equal with and specify the time limit. If the monitored
event doesn’t occur in this time limit, the wait loop is interrupted and the MPL program passes to the next
instruction.

Remarks:

• By default, the option Wait until the event occurs is checked. Typically, you define an event, than
wait for the event to occur.

• If the option Wait until the event occurs is checked without a time limit, and the programmed
event doesn’t occur, the MPL program will remain in a loop. In order to exit from this loop, send via
a communication channel a GOTO command, which moves the program execution outside the loop

OK: Close this dialogue and save the event programming in your motion sequence list.

Cancel: Close this dialogue without saving or updating the event programming in the motion sequence
list.

Help: Open this help page.

See also:

Events – MPL Programming Details

Event Selection

Motion Programming

© ElectroCraft 2013 181 MPD User Manual

6.1.14.1. Event Type Selection

The “Event Type” dialogue allows you to select an event. An event is a programmable condition, which
once set, is monitored for occurrence.

The “Event Type” dialogue may be opened from:

• Events dialogue:

 Event Type – called from Events dialogue

• One of the following motion dialogues: Trapezoidal Profiles, S-curve Profiles, PT, PVT, External,
Electronic Gearing, Electronic Camming, Contouring, Test:

 Event Type – called from a motion dialogue

The events are grouped into 8 categories:

None/ When a previously defined event occurs. The meaning of this case depends from where the
“Event Type” dialogue was opened:

• None – appears when the dialogue is opened from the “Events” dialogue. Check this item if
you have already defined an event and now you want to: a) program a stop when the event
occurs and/or b) wait for the programmed event to occur.

• When a previously defined event occurs – appears when the dialogue is opened from one
of the motion dialogues (see above). Check this item if you have already defined an event (in
a previous motion sequence) and now you want to start the actual motion sequence when
this event occurs.

When actual motion is completed – for programming the event: when the actual motion is completed.

© ElectroCraft 2013 182 MPD User Manual

Function of motor or load position – for programming the events: when the absolute or relative motor or
load position is equal or over/under a value or the value of a variable.

Function of motor or load speed – for programming the events: when the motor or load speed is equal or
over/under a value or the value of a variable.

After a wait time – for programming a time delay, using a time event. The monitored event is: when the
relative time is equal with a value or the value of a variable

Function of reference – for programming the events: when the position or speed or torque reference is
equal or over/under a value or the value of a variable.

Function of inputs status – for programming the events: when capture inputs or limit switch inputs or
general purpose inputs change status: low to high or high to low.

Function of a variable value – for programming the events: when a selected variable is equal or
over/under a value or the value of another variable.

OK: Close this dialogue and save selected event

Cancel: Close this dialogue without saving the selected event

Help: Open this help page.

See also:

Events

Motion Programming

© ElectroCraft 2013 183 MPD User Manual

6.1.14.2. Event - When the actual motion is completed

This dialogue allows you to set the event: when a motion is completed. You can use, for example, this
event to start the next move only after the actual one is finalized.

The motion complete condition is set in the following conditions:

• During position control:

� With position feedback – when the position reference arrives at the position to reach
(commanded position) and the position error remains inside a settle band for a preset
stabilize time interval

� Without position feedback (open-loop systems) – when the position reference arrives at the
position to reach (commanded position)

• During speed control, when the speed reference arrives at the commanded speed

The motion complete condition is reset when a new motion is started.

In position control, choose In position control when the actual position remains inside a settle band
for the first option. Check Set motion complete parameters if you want to modify the Settle band
tolerance and the Stabilize time values. Select the measuring units from the list on the right. Leave Set
motion complete parameters unchecked if you want to keep the motion complete parameters
unchanged.

Choose In position control when the position arrives at the position to reach or in speed control
when speed command & reference are equal in:

© ElectroCraft 2013 184 MPD User Manual

• Speed control

• Position control with open-loop configurations or if you do not want to use first option

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Events – When actual motion is completed– MPL Programming details

Event Selection

Events

Motion Programming

© ElectroCraft 2013 185 MPD User Manual

6.1.14.3. Event - Function of motor or load position

This dialogue allows you to program an event function of the motor or load position. The events can be:
when the absolute or relative motor or load position is equal or over/under a value or the value of a
variable

The absolute load or motor position is the measured position of the load or motor. The relative position is
the load displacement from the beginning of the actual movement. For example if a position profile was
started with the absolute load position 50 revolutions, when the absolute load position reaches 60
revolutions, the relative motor position is 10 revolutions.

Select motor or load position, its type: absolute or relative, the event condition: over (or equal) or
under (or equal) and the comparison data: a value or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of motor or load position–MPL Programming Details

Event Selection

Motion Programming

© ElectroCraft 2013 186 MPD User Manual

6.1.14.4. Event - Function of motor or load speed

This dialogue allows you to program an event function of the motor or load speed. The events can be:
when the motor or load speed is equal or over/under a value or the value of a variable.

Select motor or load speed, the event condition: over (or equal) or under (or equal) and the comparison
data: a value or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of motor or load speed–MPL Programming Details

Event Selection

Events

Motion Programming

© ElectroCraft 2013 187 MPD User Manual

6.1.14.5. Event– After a Wait Time

This dialogue allows you to introduce a programmable delay in the motion program execution of the
motion controller/drive, using a time event. When you set this event, the motion controller/drive relative
time is reset and it starts counting from zero and the monitored condition is: when the relative time is
equal with a value or the value of a variable.

Remarks:

• The event on time can be programmed only for the local axis.

• In order to effectively execute the time delay, you need to follow this command by a Wait until
the event occurs command e.g. until the programmed relative time has elapsed.

Select the comparison data: a value or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event– After a Wait Time –MPL Programming Details

Event Selection

Events

Motion Programming

© ElectroCraft 2013 188 MPD User Manual

6.1.14.6. Event - Function of reference

This dialogue allows you to program an event function of the position or speed or torque reference. The
events can be: when the position/speed/torque reference is equal or over/under a value or the value of a
variable. Use:

• Position reference events, only when position control is performed

• Speed reference events, only when speed control is performed

• Torque reference events, only when torque control is performed

Remark: Setting an event based on the position or speed reference is particularly useful for open loop
operation where feedback position and speed is not available

Select the reference type: position, speed or torque, the event condition: over (or equal) or under (or
equal) and the comparison data: a value or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of reference –MPL Programming Details

Event Selection Events

Motion Programming

© ElectroCraft 2013 189 MPD User Manual

6.1.14.7. Event - Function of inputs status

This dialogue allows you to program one of the following events:

• When a transition occurs on one of the 2 capture inputs, where are connected the 1st and 2nd
encoder index signals (if available)

• When a transition occurs on one of the 2 limit switch inputs

• When a general purpose digital input changes its status

• When the home input changes its status

The capture inputs and the limit switch inputs can be programmed to sense either a low to high or high to
low transition. When the programmed transition occurs on either of these inputs, the following happens:

• Motor position is captured and memorized in the MPL variable CAPPOS, except the case of open-
loop systems, where the reference position is captured instead

• Master or load position is captured and memorized in the MPL variable CAPPOS2, except the
case of steppers controlled open-loop with an encoder on the load, when load position is captured
in CAPPOS.

The selection between master and load position is done as follows: load position is saved in CAPPOS2
only for the setup configurations which use different sensors for load and motor and foresee a
transmission ratio between them. For all the other setup configurations, the master position is saved in
CAPPOS2. The master position is automatically computed when pulse and direction signals or
quadrature encoder signals are connected to their dedicated inputs.

Select:

• encoder index to detect a transition on 1st capture/encoder index input

• 2nd encoder index to detect a transition on 2nd capture/encoder index

• positive limit switch to detect a transition on limit switch input for positive direction

• negative limit switch to detect a transition on limit switch input for negative direction

and choose the transition type: low -> high or high -> low

Select digital input to set an event on one of the general-purpose digital input available. The event can
be set when the input goes high or low. Select home input in order to set an event on the general
purpose digital input assigned as home input. The home input is specific for each product and based on
the setup data, MotionPRO Developer automatically generates the MPL code for reading the correct
input.

© ElectroCraft 2013 190 MPD User Manual

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Events – Function of inputs status–MPL Programming Details

Event Selection

Events

Motion Programming

© ElectroCraft 2013 191 MPD User Manual

6.1.14.8. Event - Function of a variable value

This dialogue allows you to program an event function of the value of a selected variable. The events can
be: when the selected variable is equal or over/under a value or the value of another variable. You may
select any 32-bit MPL variable or parameter, long or fixed, for this event.

Introduce the variable name, the event condition: over (or equal) or under (or equal) and the comparison
data: a value or the value of a variable.

Remark: If you choose a predefined MPL parameter or variable and as comparison a value, you’ll see on
the right list the measurement units associated with the selected variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of a variable value –MPL Programming Details

Event Type Dialogue

Events

Motion Programming

© ElectroCraft 2013 192 MPD User Manual

6.1.15. Jumps and Function Calls

The “Jumps and Function Calls” dialogue allows you to control the MPL program flow through
unconditional or conditional jumps and unconditional, conditional or cancelable calls of MPL functions.

Select Goto and indicate the jump address in address, label or address set in variable. The jump
address can be set directly as a numerical value (if it is known) or indirectly via:

• A label. Use Insert label name to place the label in the desired location. The label name can be
any string of up to 32 characters, which starts with an alphanumeric character or with underscore.

• A 16-bit MPL variable whose value represents the jump address.

Remark: You may assign a label to a 16-bit integer variable. The variable takes the value of the label i.e.
the address of the next instruction after label. Example: user_var = jump_label;

Leave if variable unchecked to execute an unconditional jump. Check if variable to execute a
conditional jump and specify a test variable and a condition. The test variable is always compared with
zero. The possible conditions are: < 0, <= 0, >0, >=0, =0, ≠ 0. If the condition is true the jump is
executed, else the next MPL command is carried out.

Select Call and indicate the name of a MPL function in address, label or address set in variable. A
MPL function starts with a label and ends with the RET instruction. The label gives the MPL function
address and name. You can create, rename or delete MPL functions using the Functions View.

Remark: The MPL functions are placed after the end of the main program

Similarly with the jump address, the MPL function address can be set directly, as a numerical value (if it is
known), or indirectly via:

• The MPL function starting label (i.e. the function name)

• A 16-bit MPL variable whose value represents the MPL function address.

Leave if variable unchecked to execute an unconditional call. Check if variable to execute a conditional
call and specify a test variable and a condition. The test variable is always compared with zero. The
possible conditions are: < 0, <= 0, >0, >=0, =0, ≠ 0. If the condition is true the call is executed, else the
next MPL command is carried out.

© ElectroCraft 2013 193 MPD User Manual

Choose Cancelable Call and indicate the MPL function address if the exit from the called function
depends on conditions that may not be reached. In this case, using Abort cancelable call you can
terminate the function execution and return to the next instruction after the call.

Select RETurn from function to insert the RET instruction, which ends a MPL function. When RET
instruction is executed, the MPL program returns to the next instruction (motion sequence) after the MPL
function call.

Select RETurn from interrupt to insert the RETI instruction, which ends a MPL interrupt. When RETI
instruction is executed, the MPL program returns to the point where it was before the MPL interrupt
occurrence.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

Jumps and Function Calls – MPL Programming Details

Functions View.

Motion Programming

© ElectroCraft 2013 194 MPD User Manual

6.1.16. I/O General I/O (Firmware FAxx)

The “I/O” dialogue allows you to program the following operations with the digital inputs and outputs:

• Read and save the status of a digital input into a variable

• Set low or high a digital output

• Read and save the status of multiple digital inputs into a variable

• Set multiple digital outputs according with the value of variable

The digital inputs and outputs are numbered: #0 to #39. Each programmable drive/motor has a specific
number of inputs and outputs, therefore only a part of the 40 I/Os is used. The I/O numbering is common
for all the products; hence each product has its own list of available I/Os. This is not an ordered list. For
example, a product with 4 inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the
outputs #28, #29, #30 and #31.

If you want to read the status of an input:

1. Select Single I/O, Read input line, choose the desired input from the list of available inputs and
provide the name of an integer variable where to save the input status

2. Check Set as input if the input selected may also be used as an output (i.e. the input line
number occurs in the outputs list too). Do this operation only once, first time when you use the
input. Omit this check if the drive/motor has the inputs separated from the outputs (i.e. all have
different line numbers)

3. Press OK

© ElectroCraft 2013 195 MPD User Manual

When this MPL command is executed, the variable where the input line status is saved, becomes:

• Zero if the input line was low

• Non-zero if the input line was high

Remark: Check the drive/motor user manual to find if the input line you are reading is directly connected
or is inverted inside the drive/motor. If an input line is inverted, the variable where the input line is saved
is inverted too: zero if the input is high (at connectors level), non-zero if the input is low (at connectors
level).

If you want to set an output low or high:

1. Select Single I/O, choose Set output line, select the desired output from the list of available
outputs and choose the output level: low or high

2. Check Set as output if the output selected may also be used as an input (i.e. the output line
number occurs in the inputs list too). Do this operation only once, first time when you use the
output. Omit this check if the drive/motor has the inputs separated from the outputs (i.e. all have
different line numbers)

3. Press OK

Remark: The MPL code generated takes into account the possibility to have outputs inverted inside the
drive/motor. This information, provided by the setup data, is used to inverse the output command logic:
getting the output high (at connectors level) means setting the output low and to getting the output low (at
connectors level) means setting the output high

Check Read inputs in variable to read simultaneously more inputs and specify the name of an integer
variable where to save their status. The inputs are:

• Enable input – saved in bit 15

• Limit switch input for negative direction (LSN) - saved in bit 14

• Limit switch input for positive direction (LSP) - saved in bit 13

• General-purpose inputs #39, #38, #37 and #36 – save din bits 3, 2, 1 and 0

The bits corresponding to these inputs are set as follows: 0 if the input is low and 1 if the input is high.
The other bits of the variable are set to 0.

Remark: If one of these inputs is inverted inside the drive/motor, the corresponding bit from the variable
is inverted too. Hence, these bits always show the inputs status at connectors level (0 if input is low and
1 if input is high) even when the inputs are inverted.

Check Set multiple outputs to a value of variable to set simultaneously more outputs with the value of
the specified variable. The outputs are:

• Ready output – set by bit 15

• Error output – set by bit 14

• General-purpose outputs: #31, #30, #29, #28 – set by bits 3, 2, 1, and 0

The outputs are set as follows: low if the corresponding bit in the variable is 0 and high if the
corresponding bit in the variable is 1. The other bits of the variable are not used.

Remark: If one of these outputs is inverted inside the drive/motor, its command is inverted too. Hence,
the outputs are always set at connectors level according with the bits values (low if bit is 0 and high if bit
is 1) even when the outputs are inverted.

© ElectroCraft 2013 196 MPD User Manual

CAUTION: Do not use Set multiple outputs to a value of variable if any of the 6 outputs mentioned is
not on the list of available outputs of your drive/motor. There are products that use some of these outputs
internally for other purposes. Attempting to change these lines status may harm your product.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page.

See also:

General-purpose I/O – MPL Programming Details

Motion Programming

© ElectroCraft 2013 197 MPD User Manual

6.1.17. I/O General I/O (Firmware FBxx)

The “I/O” dialogue allows you to program the following operations with the digital inputs and outputs:

• Read and save the status of a digital input into a variable

• Set low or high a digital output

• Read and save the status of multiple digital inputs into a variable

• Set multiple digital outputs according with an immediate value or the value of 16-bit variable

The digital inputs and outputs are numbered: 0 to 15. Each programmable drive/motor has a specific
number of inputs and outputs, therefore only a part of the 16 inputs or outputs is used. The I/O numbering
is common for all the products; hence each product has its own list of available I/Os. This is an ordered
list. For example, a product with 4 inputs and 4 outputs can use the inputs: IN0, IN1, IN2 and IN3 and the
outputs OUT0, OUT1, OUT2 and OUT3.

If you want to read the status of an input:

1. Select Single I/O, Read input line, choose the desired input from the list of available inputs and
provide the name of an integer variable where to save the input status

2. Check Set as input if the input selected may also be used as an output. Do this operation only
once, first time when you use the input. Omit this check if the drive/motor has the inputs
separated from the outputs (i.e. all have different line numbers)

3. Press OK

© ElectroCraft 2013 198 MPD User Manual

When this MPL command is executed, the variable where the input line status is saved, becomes:

• Zero if the input line was low

• Non-zero if the input line was high

Remark: Check the drive/motor user manual to find if the input line you are reading is directly connected
or is inverted inside the drive/motor. If an input line is inverted, the variable where the input line is saved
is inverted too: zero if the input is high (at connectors’ level), non-zero if the input is low (at connectors’
level).

If you want to set an output low or high:

1. Select Single I/O, choose Set output line, select the desired output from the list of available
outputs and choose the output level: low or high

2. Check Set as output if the output selected may also be used as an input. Do this operation only
once, first time when you use the output. Omit this check if the drive/motor has the inputs
separated from the outputs.

3. Press OK

Remark: The MPL code generated takes into account the possibility to have outputs inverted inside the
drive/motor. This information, provided by the setup data, is used to inverse the output command logic:
getting the output high (at connectors’ level) means setting the output low and to getting the output low (at
connectors’ level) means setting the output high

Check Read inputs in variable to read simultaneously more inputs and specify the name of an integer
variable where to save their status. The bits corresponding to these inputs are set as follows: 0 if the input
is low and 1 if the input is high. The other bits of the variable are set to 0.

Remark: If one of these inputs is inverted inside the drive/motor, the corresponding bit from the variable
is inverted too. Hence, these bits always show the inputs status at connectors level (0 if input is low and 1
if input is high) even when the inputs are inverted.

Check Set outputs to set simultaneously more outputs with the value of 16-bit mask or variable. Select
the outputs you want to command and specify how they are set:

• with the mask generated after setting as High or Low each of the selected outputs

• with the value of the specified 16-bit variable.

The outputs are set as follows: low if the corresponding bit in the mask or variable is 0 and high if the
corresponding bit in the mask or variable is 1. The other bits of the mask or variable are not used.

Remark: If one of these outputs is inverted inside the drive/motor, its command is inverted too. Hence,
the outputs are always set at connectors level according with the bits values (low if bit is 0 and high if bit
is 1) even when the outputs are inverted.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page.

See also:

General-purpose I/O – MPL Programming Details

Motion Programming

© ElectroCraft 2013 199 MPD User Manual

6.1.18. Assignment & Data Transfer - Setup 16-bit variable

The “Assignment and Data Transfer – 16 bit Integer Data” dialogue helps you to:

1. Assign a value to a 16-bit integer MPL parameter/variable

2. Transfer in a memory location, a 16-bit value or the value of a 16-bit integer MPL parameter or
variable

Select Set 16-bit variable to assign a value to a 16-bit integer MPL parameter or variable. Introduce its
name and choose one of the possible sources:

• With value / 16 bit variable / label: A 16-bit value or the value of a 16-bit variable or the value
of a label. Introduce in the associated field the value or the variable/label name.

• With data / program / E2ROM memory contents located at address set in pointer
variable: The value of a memory location whose address is set in another 16-bit (pointer)
variable. Introduce in the associated field the pointer variable name. Check then increment
the pointer variable to automatically increment by one the pointer value, after the assignment
is done. This option is particularly useful for repetitive assign operations where source is placed
in successive memory locations. The memory type is split into 3 categories: data – for the RAM
area for MPL data, program – for the RAM area for MPL programs and E2ROM – for the
EEPROM area for MPL programs.

Remark: The data memory may be used to extend the number of user-defined variables. By
data exchanges with MPL variables, the data memory locations may be used as a temporary

© ElectroCraft 2013 200 MPD User Manual

buffer. Work for example for these operations with the RAM locations reserved but not used by
the cam tables.

• With low / high part of a 32-bit variable: The low or high 16-bit part of a 32-bit MPL
parameter or variable. Introduce in the associated field the variable name.

• With inverse (-) of variable: The inverse (negate) value of a 16-bit MPL parameter or variable.
Introduce in the associated field the variable name

• Using AND mask…and OR mask …: The result of a logical operations:

� AND between the selected variable and the AND mask value

� OR between the above result and the OR mask value

• With checksum of data located in data / program / E2ROM memory between address … and …:
The result of a checksum performed with all the locations situated between the 2 specified memory
addresses. The memory type is split into 3 categories like in the case of indirect addressing: data – for
the RAM area for MPL data, program – for the RAM area for MPL programs and E2ROM – for the
EEPROM area for MPL programs.

Remark: The checksum is the sum modulo 65536 of all the memory values, including those from
the limits. The address limits are hexadecimal values.

Select Set data / program / E2ROM memory contents located at address set in the pointer variable
to transfer in a memory location, a 16-bit value or the value of a 16-bit integer MPL parameter or variable.
The memory location address is provided by another 16-bit (pointer) variable. Introduce in the associated
fields the pointer variable name and the 16-bit value or the variable name. Check then increment the
pointer variable to automatically increment by one the pointer value, after the assignment is done. This
option is particularly useful for repetitive assign operations where destination is placed in successive
memory locations. The memory type is split into 3 categories: data – for the RAM area for MPL data,
program – for the RAM area for MPL programs and E2ROM – for the EEPROM area for MPL programs.

OK: Close this dialogue and save the assignment or data transfer in your motion sequence list.

Cancel: Close this dialogue without anything in your motion sequence list.

Help: Open this help page.

 See also:
Assignment and Data Transfer: 16-bit data – MPL Programming Details
Motion Programming

6.1.19. Assignment & Data Transfer - Setup 32-bit variable

The “Assignment and Data Transfer – 32-bit Long or Fixed Data” dialogue helps you:

1. Assign a value to a 32-bit long or fixed MPL parameter/variable

2. Assign a value to the high (16MSB) or low (16LSB) part of a 32-bit long or fixed data

3. Transfer in 2 consecutive memory locations, a 32-bit value or the value of a 32-bit long or fixed
MPL parameter or variable

© ElectroCraft 2013 201 MPD User Manual

Select Set 32-bit variable to assign a value to a 32-bit long or fixed MPL parameter or variable. Introduce
its name and choose one of the possible sources:

• With value / 32 bit variable: A 32-bit value or the value of a 32-bit variable. Introduce in the
associated field the value or the variable name.

• With data / program / E2ROM memory contents located at address set in pointer
variable: The value of 2 consecutive memory locations. The first memory address (the lowest)
is provided by another 16-bit (pointer) variable. Introduce in the associated field the pointer
variable name. Check then increment the pointer variable to automatically increment by two
the pointer value, after the assignment is done. This option is particularly useful for repetitive
assign operations where source is placed in successive memory locations. The memory type is
split into 3 categories: data – for the RAM area for MPL data, program – for the RAM area for
MPL programs and E2ROM – for the EEPROM area for MPL programs.

Remark: The data memory may be used to extend the number of user-defined variables. By data
exchanges with MPL variables, the data memory locations may be used as a temporary buffer. Work for
example for these operations with the RAM locations reserved but not used by the cam tables.

• With inverse (-) of variable: The inverse (negate) value of a 32-bit MPL parameter or variable.
Introduce in the associated field the variable name

• With 16-bit value of variable…left shifted with: The value of a 16-bit MPL data, left shifted with 0 to
16 bits. Introduce in the associated fields the variable name and the shift value.

Select Set low / high part of 32-bit variable… with value/16-bit variable…to copy a 16-bit data into the
higher or lower 16-bits or a 32-bit MPL data. The 16-bit data can be either an immediate value or a 16-bit
MPL data. Choose low or high part and introduce in the associated field the value or the variable name.

© ElectroCraft 2013 202 MPD User Manual

Remarks:

• The left shift operation is done with sign extension. If you intend to copy the value of an integer MPL
data into a long MPL data preserving the sign use this operation with left shift 0

• If you intend to copy the value of a 16-bit unsigned data into a 32-bit long variable, assign the 16-bit
data in low part of the long variable and set the high part with zero.

Select Set data / program / E2ROM memory contents located at address set in the pointer variable
to transfer in 2 consecutive memory locations, a 32-bit value or the value of a 32-bit integer MPL
parameter or variable. The first memory address (the lowest) is provided by another 16-bit (pointer)
variable. Introduce in the associated field the pointer variable name and the 16-bit value or the variable
name. Check then increment the pointer variable to automatically increment by two the pointer value,
after the assignment is done. This option is particularly useful for repetitive assign operations where
destination is placed in successive memory locations. The memory type is split into 3 categories: data –
for the RAM area for MPL data, program – for the RAM area for MPL programs and E2ROM – for the
EEPROM area for MPL programs.

Remark: When this operation is performed having as source an immediate value, the MPL compiler
checks the type and the dimension of the immediate value and based on this generates the binary code
for a 16-bit or a 32-bit data transfer. Therefore if the immediate value has a decimal point, it is
automatically considered as a fixed value. If the immediate value is outside the 16-bit integer range (-
32768 to +32767), it is automatically considered as a long value. However, if the immediate value is
inside the integer range, in order to execute a 32-bit data transfer it is necessary to add the suffix L after
the value, for example: 200L or –1L.

OK: Close this dialogue and save the assignment or data transfer in your motion sequence list.

Cancel: Close this dialogue without anything in your motion sequence list.

Help: Open this help page.

See also:

Assignment and Data Transfer: 32-bit data – MPL Programming Details

Motion Programming

© ElectroCraft 2013 203 MPD User Manual

6.1.20. Assignment & Data Transfer - Arithmetic Operations

The “Arithmetic Operations” dialogue allows you to program the following arithmetic operations: addition,
subtraction, multiplication and division, plus the left and right shifting. All these operations are signed i.e.
the operands are treated as signed numbers. Except the multiplication, the result is saved in the left
operand. For multiplication, the result is saved in the dedicated product register.

Select Add to variable and introduce the name of the left operand to perform an addition. Indicate the
right operand in the value/variable field. The left operand may be a 16-bit or 32-bit MPL data. The right
operand may be an immediate value or another MPL data, of the same type as the left operand.

Remark: When the left operand is a 32-bit long or fixed MPL data and the right operand is a 16-bit
integer value, it is treated as follows:

• Sign extended to a 32-bit long value, if the left operand is a 32-bit long

• Set as the integer part of a fixed value, if the left operand is a 32-bit fixed

Select Subtract from variable and introduce the name of the left operand to perform a subtraction.
Indicate the right operand in the value/variable field. The left operand may be a 16-bit or 32-bit MPL
data. The right operand may be an immediate value or another MPL data, of the same type as the left
operand.

Remark: When the left operand is a 32-bit long or fixed MPL data and the right operand is a 16-bit
integer value, it is treated as follows:

• Sign extended to a 32-bit long value, if the left operand is a 32-bit long

• Set as the integer part of a fixed value, if the left operand is a 32-bit fixed

 Select Set PROD register with the product of variable and introduce the name of the first operand to
perform a multiplication. Indicate the second operand in with value / 16 bit variable field. The first

© ElectroCraft 2013 204 MPD User Manual

operand may be a 16-bit or 32-bit MPL data. The second operand may be a 16-bit value or a 16-bit MPL
data. The multiplication result is saved left or right shifted in a dedicated 48-bit product register. Choose
the shift type Left or Right and number of shift bits: 0 to 15. Use 0 to perform no shift.

Remark: The result is placed in the product register function of the left operand. When shift is 0:

• In the 32 least significant bits, when the left operand is a 16-bit integer. The result is a 32-bit long
integer

• In all the 48 bits, when the left operand is a 32-bit fixed. The result has the integer part in the 32
most significant bits and the fractional part in the 16 least significant bits

• In all the 48 bits, when the left operand is a 32-bit long. The result is a 48-bit integer

The MPL variable PRODH contains the 32 most significant bits of the product register. The MPL variable
PROD contains the 32 least significant bits of the product register.

Select Divide variable and introduce the name of the left operand: the dividend, to perform a division.
Indicate the right operand: the divisor, in the by the value of variable field. The dividend is a 32-bit MPL
data. The divisor is 16-bit MPL data.

Remark: The result, saved in first operand, is a fixed value with the integer part in the 16 most significant
bits and the fractional part in the 16 least significant bits.

Choose Shift Left / Right and introduce the name of the MPL data to be shifted left or right in the
variable field, followed by the number of shift bits: 0 to 15. The MPL data can be any 16-bit or 32-bit MPL
data.

Choose Shift Left / Right product register by and introduce the number of shift bits: 0 to 15, to perform
a left or right shift of the 48-bit product register.

Remark: At right shifts, high order bits are sign-extended and the low order bits are lost. At left shifts,
high order bits are lost and the low order bits are zeroed.

OK: Close this dialogue and save the arithmetic or logic operation in your motion sequence list.

Cancel: Close this dialogue without anything in your motion sequence list.

Help: Open this help page.

See also:

Arithmetic and logic operations. MPL Programming Details

Motion Programming

© ElectroC

6

The “Data
drives/mo
drive/moto
activate/d

Check Se
1 and 255

a. With th
axis ID
with d)

b. If the se

c. If there
for axis

d. If the d
which i

Remark:
phase. Ho
above com

In Motion
Informati
drive/moto
communic
ID and lat

Craft 2013

.1.21. Assig

a Transfer B
otors connect
or network a
eactivate the

et axis ID if yo
5. It is initially

he value read
D is set with t

etup table is i

 is no axis ID
s ID setting

drive/motor ha
s 255.

Typically, the
owever, if ne
mmand

PRO Develop
on. When an
or having the
cation proble
ter on switche

gnment & D

Between Axe
ted in a net
address, and

synchronizat

ou want to ch
set at power

from the EE
the value rea

nvalid, with th

D set by a valid

as no hardwa

e axis ID is ke
eeded, you c

per, each app
n application
e same axis
ms, if this is
es to another

20

Data Transfe

s” dialog allo
twork. From
d the groups
tion between

hange the axi
on using the

PROM setup
d from the h

he last axis ID

d setup table

are switches/j

ept constant d
an change th

plication has
is selected, a
ID as the ap
performed du
axis ID.

05

er - Data Tra

ows you to
this dialog,

s it belongs
axes.

s ID and set
following alg

p table contain
ardware swit

D value read f

, with the valu

umpers for a

during operati
he axis ID to

associated a
all the data e
pplication Ax
uring operatio

ansfer Betw

program data
you can als
for multicas

a new value.
orithm:

ning all the s
tches/jumpers

from a valid s

ue read from

axis ID setting

tion at the val
o any of the

an Axis Numb
exchange ope
is Number. A
on i.e. if the d

MPD U

ween Axes

a transfer op
so change th
st transmissio

The axis ID

etup data. If
s or in their a

setup table

the hardware

g, with the de

lue establishe
255 possible

ber, set in Ap
erations are p
An axis ID ch
drive/motor s

User Manual

perations bet
he axis ID
ons as well

is a value bet

this value is
absence acco

e switches/jum

efault axis ID

ed during the
e values, usin

pplication Ge
performed wi
hange may c
tarts with one

tween
– the
as to

tween

0, the
ording

mpers

value

setup
ng the

eneral
th the
create
e axis

© ElectroCraft 2013 206 MPD User Manual

Check Set group if you want set the groups to which a drive/motor belongs. A group is way to identify a
number of drives, for a multicast transmission. Each drive can be programmed to be member of one or
several of the 8 possible groups (up to all). A drive will accept all the messages sent to any of the groups
it belongs. Push the buttons for the groups the drive/motor will belong. Use Add groups or Remove
groups to add or remove your drive/motor from one or several groups.

Remark: A message can be:

• Sent to an axis defined by an Axis ID

• Multicast to one group of axes defined by a Group ID. The Group ID is an 8-bit value, where each bit
set represents a group. For example, a multicast to Group ID = 4 (100b) will be received by all drives
from group 3.

• Broadcast to all nodes, if the Group ID = 0.

Check Synchronization group to activate/deactivate the synchronization procedure. This procedure
requires activating one axis as a synchronization master. The other axes are deactivated and are
synchronization slaves. Select Send synchronization messages every… and set the time interval
between synchronization messages, to activate the synchronization master. Recommended starting
value for the time interval is 20ms. When synchronization procedure is active, the execution of the control
loops on the slaves is synchronized with those of the master within a 10µs time interval. Due to this
powerful feature, drifts between master and slave axes are eliminated. Deactivate the synchronization
procedure by choosing Stop sending synchronization messages. This will disable the synchronization
master and set the axis as a synchronization slave. In the absence of a master, the synchronization
process is stopped.

The data transfer operations may be split into three categories:

1. Read data from a remote axis. A variable or a memory location from the remote axis is saved into a
local variable

2. Write data to a remote axis or group of axes. A variable or a memory location of a remote axis or group
of axes is written with the value of a local variable

3. Send MPL commands from local drive to a remote drive or group of drives

Check data transfer commands, and select From axis to read from the remote axis specified, the value
of a variable or the data / program / E2ROM memory contents located at an address set in a pointer
variable. The data is saved in the local MPL variable indicated in to local variable field. The local
variable can be either a 16-bit or a 32-bit MPL data. Its type, dictates the data transfer size. Check then
increment the pointer variable to automatically increment the pointer by one or two function of the local
variable type, after the transfer is performed. The memory type is split into 3 categories: data – for the
RAM area for MPL data, program – for the RAM area for MPL programs and E2ROM – for the EEPROM
area for MPL programs.

Select Send the local variable to copy on a remote axis or group of axes, the value of the local variable
specified. The data is saved either in an external/remote variable or in the data / program / E2ROM
memory location(s) from address set in the pointer variable indicated. The local variable can be either
a 16-bit or a 32-bit MPL data. Its type, dictates the data transfer size. Check then increment the pointer
variable to automatically increment the pointer by one or two function of the local variable type, after the
transfer is performed. The memory type is split into 3 categories: data – for the RAM area for MPL data,
program – for the RAM area for MPL programs and E2ROM – for the EEPROM area for MPL programs.
The destination specified at axis/group can be:

• An axis ID set with a number between 1 and 255

• A group set with letter G followed by a number between 1 and 8. Examples: G1, G7

• A broadcast to all axes set with letter B

© ElectroCraft 2013 207 MPD User Manual

Select Send MPL command to program the local axis to transmit the MPL command(s) you type in the
associated field towards the destination specified in the axis/group field. The transmission is done when
the command is executed.

Remarks:

• This command offers a very powerful tool through which one drive/motor may control other
drives/motors from the network. For example it can start or stop the other drives motion or check their
status

• You may type multiple MPL commands separated by semicolon (;). These will be sent one by one in
the order of occurrence in the edit.

• Via this type of messages, you can send all the MPL instructions having an instruction code of
maximum 4 words. In this category enter most of the MPL commands (see MPL Instruction Coding and
the detailed description of the MPL Instructions).

 OK: Close this dialogue and save the operations selected in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page.

See also:

Axis Identification

Data Transfer Between Axes – MPL Programming Details

Remote Control

Motion Programming

© ElectroCraft 2013 208 MPD User Manual

6.1.22. Send data to host

The “Send Data to Host” dialogue allows you to program when the drive/motor will send messages to
your host. The message transmission can be triggered by:

• Conditions which change the status or error registers

• The execution of a dedicated MPL command from your MPL program. Through this command you can
send to your host the contents of any MPL data

In the first case, you can select the status or the error register bits, which will trigger a message when are
changed. The selection is done via masks, one for each register, where for each bit you can choose if to
trigger or not a transmission when it is changed.

When the transmission is triggered by a bit change in a status register SRH (high part) or SRL (low part),
the message sent contains these 2 registers grouped together as a single 32-bit register/data. When the
transmission is triggered by a bit change in the error register MER, the message sent contains this
register.

In the Host address write the axis ID of the host.

Check Status Register to enable transmission on status register bit changes. From the right list, select a
bit whose change you want to trigger a message transmission and press the [<] button. The selected bit
will appear on the left list. Repeat the operation for the other bits. Use the button [<<] to select all the bits.
Choose a bit from the left list and press the [>] button to move it back to the right list. Use the [>>]
button to remove all the bits from the left list.

© ElectroCraft 2013 209 MPD User Manual

Check Error Register to enable transmission on error register bit changes. From the right list, select a bit
whose change you want to trigger a message transmission and press the [<] button. The selected bit
will appear on the left list. Repeat the operation for the other bits. Use the button [<<] to select all the bits.
Choose a bit from the left list and press the [>] button to move it back to the right list. Use the [>>]
button to remove all the bits from the left list.

Remark: After power on, the 2 masks are empty i.e. none of the status or error bits is selected to trigger
a transmission on change.

Check Send contents of variable and indicate the name of the MPL data to be sent when this MPL
command is executed. The MPL data can be any 16-bit or 32-bit data: MPL registers, parameters,
variable or user variables.

Remark: By default, at power on, the host address is set equal with the drive/motor axis ID. Therefore,
the messages will be sent via RS-232 serial communication. If the host address is different from the
drive/motor axis ID, the messages are sent via the other communication channels: CAN bus, RS485, etc.

See also:

Messages sent to the host – MPL Programming Details

Motion Programming

© ElectroCraft 2013 210 MPD User Manual

6.1.23. Assignment & Data Transfer - Miscellaneous

The “Miscellaneous” dialogue allows you to:

• Declare user variables

• Reset/exit the drive/motor from the FAULT status

• Execute less frequently used MPL commands like: END, NOP, ENDINIT

• Change the CAN bus and serial RS232 / RS485 communication settings

• Save actual setup data from RAM into the EEPROM in the setup table

Select Define variable named if you want to define a new variable. Specify the variable name in the next
field and choose the variable type from the list. The options are: int, fixed or long. A variable of type int
is a 16-bit signed integer. A variable of type long is a 32-bit signed integer. A variable of type fixed is 32-
bit wide and is used for signed fixed-point representations with 16MSB the integer part and 16LSB the
factionary part.

Select Reset FAULT status to exit a drive/motor from the FAULT status in which it has entered due to an
error. After a fault reset command, most of the bits from error register MER are cleared (set to 0), ready
output is set to ready level, error output is set to no error level and drive/motor returns to normal
operation.

Remarks:

• The FAULT reset command does not change the status of MER.15 (enable input on disabled
level), MER.7 (negative limit switch input active), MER.6 (positive limit switch input active) and
MER.2 (invalid setup table)

• The drive/motor will return to FAULT status if there are errors when the FAULTR command is
executed

© ElectroCraft 2013 211 MPD User Manual

Select Insert END instruction to introduce in your MPL program the instruction END. When END is
executed, the MPL program execution is stopped.

Remark: It is mandatory to end the main section of a MPL program with an END command. All the MPL
functions and the MPL interrupt service routines must follow after the END command. MotionPRO
Developer automatically handles these requirements, when it generates the MPL program to be compiled
and downloaded into the drive.

Select Insert NOP instruction to introduce a NOP (No operation) instruction. It can be used as a delay
between two motion sequences / instructions.

In the Serial communication section, choose Change baudrate to if you want to change the drive baud
rate for RS-232 and RS-485 communication. Choose from the drop list one of the available baud rates:
9600, 19200, 38400, 56000 and 115200.

Remarks:
1. The drives/motors default serial baud rate after power on is 9600 baud, unless another value

was saved in the setup table. When you start MotionPRO Developer, the drives/motors serial
baud rate is automatically adjusted to the last value selected at Communication | Setup in the
Baud Rate field.

2. Use this command when a drive/motor operates in AUTORUN (after power on starts to execute
the MPL program from the EEPROM) and it must communicate with a host at a baud rate
different from the default value. In this case, the MPL program must start with a serial baud rate
change.

3. An alternate solution to the above case is to set via MotionPRO Developer the desired baud rate
and then to save it the EEPROM, with command SAVE. After a reset, the drive/motor starts
directly with the new baud rate, if the setup table was valid. Once set, the new default baud rate
is preserved, even if the setup table is later on disabled, because the default serial baud rate is
stored in a separate area of the EEPROM.

In the CAN communication section, choose Select Set CAN baudrate to if you want to change the
baud rate for CAN-bus communication. Choose from the drop list one of the available CAN baud rates:
125kb, 250kb, 500kb, 800kb, 1Mb.

Remarks:
1. The drives/motors default CAN baud rate after power on is 500kb, unless another value was

saved in the setup table. In MotionPRO Developer, at Communication | Setup, in the Baud
Rate field, you must choose the same value as the default CAN baud rate of the drives/motors
value. This selection refers ONLY to the CAN bus interface of your PC

2. Use this command when a drive/motor operates in AUTORUN (after power on starts to execute
the MPL program from the EEPROM) and it must communicate with a host at a baud rate
different from the default value. In this case, the MPL program must start with a CAN baud rate
change.

3. An alternate solution to the above case is to set via MPL command CANBR the desired CAN
baud rate and then to save it the EEPROM, with command SAVE. After a reset, the drive/motor
starts directly with the new CAN baud rate, if the setup table was valid. Once set, the new default
CAN baud rate is preserved, even if the setup table is later on disabled, because the default
CAN baud rate is stored in a separate area of the EEPROM.

Select Insert ENDINIT instruction to introduce an ENDINT (end of initialization) instruction. This
command uses the available setup data to perform key initializations, but does not activate the controllers
or the PWM outputs. These are activated with the AXISON command

Remarks:

© ElectroCraft 2013 212 MPD User Manual

1. After power on, the ENDINIT command may be executed only once. Subsequent ENDINIT
commands are ignored.

2. The AXISON command must be executed after the ENDINIT command

3. Typically, the ENDINIT command is executed at the beginning of a MPL program and may be
followed by the AXISON command even if no motion mode was set. In the absence of any
programmed motion, the drive applies zero voltage to the motor.

4. In MotionPRO Developer, ENDINIT and AXISON commands are automatically included when a
MPL program is generated. Hence you can start directly with the motion programming

Select Save actual setup data in the EEPROM to insert a SAVE instruction in the MPL program. When
SAVE instruction is executed, the actual values of the MPL parameters are copied from the RAM memory
into the EEPROM memory, in the setup table. Through this command, you can save all the setup
modifications done, after power on initialization.

OK: Close this dialogue and save the MPL commands in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page

See also:

Miscellaneous commands – MPL Programming Details

Motion Programming

© ElectroC

6

The “Inter
Program
suspende
short ISR

• Th
mo

• Th
sla

• W

• If
Re
int

• Th
the

• Th
pro

Interr

Craft 2013

.1.24. MPL I

rrupt Settings
Language) in

ed to execute
). The MPL in

he drive cont
otion controlle

he motion co
aves occurs

hen an interru

the interrupt
egister) and
terrupt conditi

he interrupt c
e MPL interru

he interrupt s
ogram execut

rupt settings d

nterrupt Se

s” dialogue a
nterrupts. Wh
a MPL functi

nterrupt mech

tinuously mo
er application

ntroller has a

upt condition

is unmasked
also if the in
ion is qualified

auses a jump
upts are globa

service routine
tion and in th

dialog for driv

21

ettings

llows you to
hen a MPL i
ion associate

hanism is the

nitors 12 con
s there is a 1

an additional

occurs, a flag

d e.g. the sa
nterrupts are
d and it gene

p to the asso
ally disabled (

e must end w
e same time

ve/motor

3

activate and/
nterrupt occu

ed with the int
following:

nditions that
3th condition

condition tha

g (bit) is set in

me bit (as p
globally ena

rates a MPL

ociated interru
DINT) and th

with the MPL
globally enab

/or deactivate
urs, the norm
terrupt, called

may genera
 related to sla

at triggered

n the ISR (Inte

position) is se
abled (EINT
interrupt

upt service ro
he interrupt fla

L instruction
bles the MPL

MPD U

e the MPL (E
mal MPL pro
d Interrupt Se

ate MPL inte
ave error stat

interrupt whe

errupt Status

et in the ICR
instruction w

outine. On en
ag is reset

RETI, which
interrupts.

User Manual

ElectroCraft M
gram execut
ervice Routi

errupts. In ca
us.

en an error o

Register)

R (Interrupt C
was executed

ntry in this ro

returns to n

Motion
tion is
ne (in

ase of

on the

Control
d), the

outine,

normal

© ElectroCraft 2013 214 MPD User Manual

The 12 conditions are:

1. Int0 – Enable input has changed: either transition sets the interrupt flag

2. Int1 – Short-circuit: when the drive/motor hardware protection for short-circuit is triggered

3. Int2 – Software protections: when any of the following protections is triggered:

a) Over current

b) I2t motor

c) I2t drive

d) Over temperature motor

e) Over temperature drive

f) Over voltage

g) Under voltage

4. Int3 – Control error: when the control error protection is triggered

5. Int4 – Communication error: when a communication error occurs

6. Int5 – Wrap around: when the target position computed by the reference generator wraps around
because it bypasses the limit of the 32-bit long integer representation

7. Int6 – LSP programmed transition detected: when the programmed transition is detected on the
limit switch input for positive direction (LSP)

8. Int7 – LSN programmed transition detected: when the programmed transition is detected on the
limit switch input for negative direction (LSN)

9. Int8 – Capture input transition detected: when the programmed transition is detected on the 1st
capture/encoder index input or on the 2nd capture/encoder index input

10. Int9 – Motion is completed: in position control, when motion complete condition is set and in
speed control when target speed reaches zero.

11. Int10 – Time period has elapsed: periodic time interrupt with a programmable time period

12. Int11 – Event set has occurred: when last defined event has been occurred

After power-on, the MPL interrupts are globally enabled together with the first 4 interrupts: Int 0 to Int 3.
For Int 2, all the protections are activated, except over temperature motor, which depends on the
presence or not of a temperature sensor on the motor; hence this protection may or may not be activated.
For each of these 4 interrupts there is a default ISR which is executed when the corresponding interrupt
occurs. You can view the contents of the default ISR in the MPL Interrupt Service Routines view. From
this view you may also modify the default ISR for these interrupts and/or define ISR for the other MPL
interrupts.

Before using other MPL interrupts, you need to enable them from this dialogue. Keep in mind that the
interrupt flags are set independently of the activation or not of the MPL interrupts. Therefore, as a general
rule, before enabling an interrupt, reset the corresponding flag. This operation will avoid triggering an
interrupt immediately after activation, due to an interrupt flag set in the past.

Remarks:

• On entry in an ISR, the MPL interrupts are globally disabled. If you want to enable during the ISR
execution ant of the other interrupts, set accordingly the interrupt mask in the ICR register and
insert the EINT instruction that globally enables the interrupts

© ElectroCraft 2013 215 MPD User Manual

• The interrupt service routines are similar with the MPL functions, except for the return instruction:
RETI (RETurn from Interrupt) instead of RET (RETurn from subroutine). Like the MPL functions,
the MPL interrupt service routines must be positioned after the end of the main program.
MotionPRO Developer handles automatically this aspect.

Check Globally Enable MPL interrupts to globally enable the MPL interrupts. Check Globally Disable
MPL interrupts to globally disable the MPL interrupts. At Enable/Disable MPL interrupt choose one or
several interrupts and select either Enable or Disable to activate or deactivate them. The status of the
other interrupts remains unchanged. For the interrupts enables, check also Reset previous MPL
interrupt request to reset the corresponding interrupt flag(s) set in the past.

For Int2 – Software protections, select Enable and press Details to modify the status (enabled or
disabled) of the protections triggering this interrupt.

© ElectroCraft 2013 216 MPD User Manual

For Int 6 - LSP programmed transition detected and Int 7 - LSN programmed transition detected
select Enable and press Details to select the monitored transition: high to low or low to high.

For Int8 – Capture input transition detected select Enable and press Details to select the monitored
transition: high to low or low to high and the capture/encoder input to use: 1st or 2nd

© ElectroCraft 2013 217 MPD User Manual

For Int10 – Time period has elapsed select Enable and press Details to set the time period.

Remark: Some of the drive/motor protections may not work properly if the MPL Interrupts are handled
incorrectly. In order to avoid this situation keep in mind the following rules:

• The MPL interrupts must be kept globally enabled to allow execution of the ISR for those MPL
interrupts triggered by protections. As during a MPL interrupt execution, the MPL interrupts are
globally disabled, you should keep the ISR as short as possible, without waiting loops. If this is not
possible, you must globally enable the interrupts with EINT command during your ISR execution.

• If you modify the interrupt service routines for Int 0 to Int 4, make sure that you keep the original
MPL commands from the default ISR. Put in other words, you may add your own commands, but
these should not interfere with the original MPL commands. Moreover, the original MPL
commands must be present in all the ISR execution paths.

OK: Close this dialogue and save the interrupt settings in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page.

See also:

MPL Interrupts – MPL Programming Details

MPL Interrupt Service Routines

Motion Programming

© ElectroCraft 2013 218 MPD User Manual

6.1.25. Free text

The “Free Text” dialogue allows you to add comments to your MPL programs in order to improve their
readability and therefore make them easier to understand and debug. A comment can include any
characters. A multi line comment must start with “ /* ” and finish with “ */ “. A single line comment can be
preceded by “ // ”.

Through this dialogue you can also insert directly MPL commands, if you know their syntax. Note that all
the MPL commands must ended with a semicolon “;”. Labels must start from the first column of a new
line and end with a colon “:”. For readability, leave at least one space before starting a MPL command in
a new line. This way you can quickly distinguish them from the labels.

Remark: The motion dialogues cover all the MPL commands you typically need in an application. There
is however a small number of MPL instructions that can’t be generated from the motion dialogues and
which may be used in some special cases. If ever needed, you can set these MPL commands via this
dialogue.

OK: Close this dialogue and add the comments / MPL commands in your motion sequence list.

Cancel: Close this dialogue without saving anything.

Help: Open this help page.

See also:

Motion Programming

© ElectroCraft 2013 219 MPD User Manual

6.2. ElectroCraft Motion Language

6.2.1. Basic Concepts

6.2.1.1. Overview

The ElectroCraft Motion Program Language (MPL) is a high-level language allowing you to:

• Setup a ElectroCraft Programmable drive/motor for a given application

• Program and execute motion sequences

The setup part consists in assigning the right values for the MPL registers and parameters. Through this
process you can:

• Describe your application configuration (as motor and sensors type)

• Select specific operation settings (as motor start mode, PWM mode, sampling rates, etc.)

• Setup the controllers’ parameters (current, speed, position), etc.

The output of the setup process is a set of values – the setup data – to be written in the MPL registers
and parameters. The setup data can be:

a) Stored in the drive/motor non-volatile EEPROM, from where it is automatically loaded into the
MPL registers and parameters at power-on, if the data integrity check is passed

b) Included at the beginning of a MPL program as a set of assignment instructions through which
the MPL registers and parameters are initialized with the desired values

Remark: PROconfig – the latest generation setup tool for ElectroCraft Programmable drives/motors –
handles the setup process according with option a).

The motion programming part allows you to:

• Set various motion modes (profiles, PVT, PT, electronic gearing or camming, etc.)

• Change the motion modes and/or the motion parameters

• Execute homing sequences

• Control the program flow through:

o Conditional jumps and calls of MPL functions

o MPL interrupts generated on pre-defined or programmable conditions (protections triggered,
transitions on limit switch or capture inputs, etc.)

o Waits for programmed events to occur

• Handle digital I/O and analogue input signals

• Execute arithmetic and logic operations

• Perform data transfers between axes

• Control motion of an axis from another one via motion commands sent between axes

© ElectroCraft 2013 220 MPD User Manual

• Send commands to a group of axes (multicast). This includes the possibility to start
simultaneously motion sequences on all the axes from the group

• Synchronize all the axes from a network

Due to a powerful instruction set, the motion programming in MPL is quick and easy even for complex
motion applications. The result is a high-level motor-independent program which once conceived may be
used in other applications too.

Basic Concepts next topics:

MPL Environment

Program Execution

MPL Program Structure

MPL Instruction Coding

MPL Data

Memory Map – Firmware version FAxx

Memory Map – Firmware version FBxx

AUTORUN mode

See also:

MPL Description

© ElectroCraft 2013 221 MPD User Manual

6.2.1.2. MPL Environment

The MPL environment includes three basic components:

1. “MPL processor”

2. Trajectory generator

3. Motor control kernel

The software-implemented “MPL processor” represents the core of the MPL environment. It decodes and
executes the MPL commands. Like any processor, it includes specific elements as program counter,
stack, ALU, interrupt management and registers.

The trajectory generator computes the position, speed, torque or voltage reference at each sampling
step, depending on the selected motion mode.

The motor-control kernel implements the control loops including: the acquisition of the feedback sensors,
the controllers, the PWM commands, the protections, etc.

When the “motion processor” executes a motion command, it translates them into actions upon the
trajectory generator and/or the motor control kernel.

Basic Concepts next topics:

Program Execution

MPL Program Structure

MPL Instruction Coding

MPL Data

Memory Map– Firmware FAxx

Memory Map – Firmware FBxx

AUTORUN mode

See also:

Basic Concepts

MPL Description

© ElectroC

The MPL
(IP) contro
execution
points to t

The seque

• A

• A

• T
el

• A

• A

• D
or
lo
sa

• A

The on-lin
received t
instruction

If an on-li
execution

The MPL

The imme
These co
be interru

The sequ
wait cond

WA

SE

lo

Craft 2013

6.2.1.3.

programs ar
ols the progra
 the IP is inc
the next MPL

ential executi

A MPL comma

A branch to the

he need to se
lectronic gear

A GOTO, CAL

A return from a

During the exe
r PT (new P
ocal_varia
ame instructio

After execution

ne command
through any c
n is completed

ne command
 of the on-line

works with 3

ediate comma
mmands don
pted by other

ential comma
ition becomes

AIT!; // Wait

EG Time,

ocal_varia

Program

e executed s
am flow. As th
creased accor

instruction, o

on may be in

and received t

e interrupt se

end the maste
ring or camm

LL or CALL

a MPL functio

ecution of the
PVT or PT p
able = [x]r
on) until a spe

n of the END

ds have the h
communicatio
d.

 is received d
e command.

types of com

ands may be
n’t require any
r MPL comma

ands require
s true. In this

a programme

Increment;

ble = [x]r

22

Execution

equentially, o
he binary cod
rdingly. When
or more exact

terrupted by

through a com

rvice routine

er position to
ing

LS instruction

on – RET or fro

e instructions:
point) if the b
remote_var
ecific conditio

instruction.

highest priorit
on channel, it

during a wait

mmands, prese

sent via a co
y wait loops t
ands.

a wait loop to
category ent

ed event to oc

; // Set a c

//Increm

remote_vari

22

one instructio
de of a MPL in
n the executio
tly to the first

one of the fol

mmunication

(ISR) when a

the slave axe

;

om a MPL int

 WAIT! (wait
buffer is full,
riable, whic
on is achieved

ty and act lik
t starts to be

loop, the wait

ented in table

ommunication
to complete.

o complete i.
ter commands

ccur

contour segm

ment to be exe

iable;

on after the ot
nstruction ma
on of a MPL
word of its bi

lowing cause

channel (on-l

a MPL interrup

es when the

terrupt – RET

t event), SEG
and data tr

ch all keep the
d

ke interrupts:
executed imm

t loop is temp

e below.

n channel, or
Their execut

e. will not pe
s like:

ent with para

ecuted when

// Get valu

MPD U

ther. A 16-bit
ay have up to

instruction e
nary code.

es:

line command

pt occurs;

current axis i

TI;

G (new contou
ransfers betw
e IP unchang

: when an on
mediately afte

porary suspen

r can reside i
tion is straigh

ermit the IP to

ameters Time

the previous

ue of remote_

User Manual

 instruction p
5 words, dur
nds, the IP a

ds);

s set as mast

ur segment),
ween axes of
ed (i.e. loop o

n-line comma
er the current

nded, to perm

n a MPL pro
htforward and

o advance un

and

one ends

_variable from

pointer
ing its

always

ter for

PVTP
f type
on the

and is
t MPL

mit the

gram.
d can’t

ntil the

m

© ElectroCraft 2013 223 MPD User Manual

//axis x and put it in local_variable

The sequential commands can reside only in a MPL program saved in the local memory.

Remark: If a sequential command is sent via a communication channel, it is immediately executed as if
the wait loop condition is always true.

The on-line commands may be sent only via a communication channel. These commands can’t be
included in a MPL program. The on-line commands do not have an associated mnemonic and syntax
rules as they are do not need to be recognized by the MPL compiler. Their code is known only by the
“MPL processor”.

Remark: Some of the on-line commands are implemented in debugging tools like the Command
Interpreter, which was specifically designed to allow sending commands via a communication channel.
These commands are presented with a “mnemonic” like that used in the Command Interpreter. The
Command Interpreter is a component present in all the ElectroCraft applications for drives/motors setup
and MPL Programming: PROconfig, MotionPRO Developer.

Basic Concepts next topics:

MPL Program Structure

MPL Instruction Coding

MPL Data

Memory Map – Firmware version FAxx

Memory Map – Firmware version FBxx

AUTORUN mode

See also:

Basic Concepts

MPL Description

© ElectroCraft 2013 224 MPD User Manual

6.2.1.4. MPL Program Structure

The main section of a MPL program starts with the instruction BEGIN and ends with the instruction END.
It is divided into two parts:

• Setup part
• Motion programming part

The setup part starts after BEGIN and lasts until the ENDINIT instruction, meaning “END of
INITitialization”. This part of the MPL program consists mainly of assignment instructions, which shall set
the MPL registers and the MPL parameters in accordance with your application data. When the ENDINIT
command is executed, key features of the MPL environment are initialized according with the setup data.
After the ENDINIT execution, the basic configuration involving the motor and sensors types or the
sampling rates cannot be changed unless a reset is performed.

Remark: The setup part can be void when setup data is saved in the EEPROM. In this case, the setup
data is automatically loaded into the MPL registers and parameters, at power-on. However, even in this
case in some situations it may still be necessary to perform some setup operations like:

• Copy of cam tables from the drive/motor EEPROM into the working RAM memory

• Copy of the whole MPL program into the RAM in special cases where the EEPROM memory
can’t be used during run time

The motion programming part starts after the ENDINIT instruction until the END instruction. All the MPL
programs (the main section) should end with the MPL instruction END. When END instruction is
encountered, the sequential execution of a MPL program is stopped.

Apart from the main section, a MPL program also includes the MPL interrupt vectors table, the interrupt
service routines (ISRs) for the MPL interrupts and the MPL functions. A typical structure for a MPL
program is presented in figure below.

© ElectroC

Typical stru

Basic Con

MPL Instr

MPL Data

Memory M

Memory M

AUTORU

See also:

Basic Con

MPL Desc

Craft 2013

ucture of a MP

ncepts next to

ruction Coding

a

Map – Firmwa

Map – Firmwa

N mode

ncepts

cription

PL Program

opics:

g

are version FA

are version FB

22

Axx

Bxx

25

MPD UUser Manual

© ElectroCraft 2013 226 MPD User Manual

6.2.1.5. MPL Instruction Coding

The MPL instruction code consists of 1 to 5, 16-bit words. The first word is the operation code. The rest of
words (if present) represent the instruction data words. The operation code is divided into two fields: Bits
15-9 represent the code for the operation category.

For example all MPL instructions that perform addition of two integer variables share the same operation
category code. The remaining bits 8-0 represent the operand ID that is specific for each instruction.

Basic Concepts next topics:

MPL Data

Memory Map – Firmware version FAxx

Memory Map – Firmware version FBxx

AUTORUN mode

See also:

Basic Concepts

MPL Description

© ElectroCraft 2013 227 MPD User Manual

6.2.1.6. MPL Data

The MPL works with the following categories of data:

• MPL Registers

• MPL Parameters

• MPL Variables

• User Variables

All MPL data are identified by their name. The names of the MPL registers, parameters or variables are
predefined and do not require to be declared. The names of the user variables are at your choice. You
need to declare the user variables before using them.

The MPL uses the following data types:

• int 16-bit signed integer

• uint 16-bit unsigned integer

• fixed 32-bit fixed-point data with the 16MSB for the integer part and the 16LSB for the
factionary part.

• long 32-bit signed integer

• ulong 32-bit unsigned integer

The data type uint or ulong are reserved for the MPL predefined data. The user-defined variables are
always signed. Hence you may declare them of type: int, fixed or long.

Remark: An unsigned MPL data means that in the firmware its value is interpreted as unsigned. Typical
examples: register values, time-related variables, protection limits for signals that may have only positive
values like temperature or supply voltage, etc. However, the same data will interpreted as signed if it is
used in a MPL instruction whose operands are treated as signed values.

Each MPL data has an associated address. This represents the address of the data memory location
where the MPL data exists. Address ranges for MPL registers, variables and parameters are from 0x0200
to 0x03AF and from 0x0800 to 0x09FF. For user-defined variables the address range is between 0x03B0
and 0x03FF. In MPL the data components may be addressed in several ways:

• direct, using their name in the MPL instruction mnemonic

Example:

CPOS = 2000; // write 2000 in CPOS parameter (command position)

• indirect, using a pointer variable. The pointer value is the address of the data component to work
with

Example:

user_var = 0x29E; // write hexadecimal value 0x29E representing CPOS address in

 // the user-defined pointer variable user_var

(user_var),dm = 2000; // write 2000 in the data memory address pointed by

 // user_var i.e. in the CPOS parameter

© ElectroCraft 2013 228 MPD User Manual

• direct with extended address, using the MPL data name

Example:

CPOS,dm = 2000; // write 2000 in CPOS using direct mode with extended address

In the MPL instructions the operands (variables) are grouped into 2 categories:

• V16. In this category enter all the 16-bit data from all the categories: MPL registers, MPL
parameters, MPL variables, and user parameters. From the execution point of view, the MPL
makes no difference between them.

• V32. In this category enter all the 32-bit data either long or fixed from all the categories: MPL
registers, MPL parameters, MPL variables, and user parameters. From the execution point of
view, the MPL makes no difference between them.

Remarks:

• It is possible to address only the high or low part of a 32-bit data, using the suffix (H) or (L) after
the variable name.

Examples:

CPOS(L) = 0x4321; // write hexadecimal value 0x4321 in low part of CPOS

CPOS(H) = 0x8765; // write hexadecimal value 0x8765 in high part of CPOS

 // following the last 2 commands, CPOS = 0x87654321

• The MPL compiler always checks the data type. It returns an error if an operand has an
incompatible data type or if the operands are not of the same type

• A write operation using indirect addressing is performed on one or two words function of the data
type. If the data is a 16-bit integer, the write is done at the specified address. If the data is fixed or
long the write is performed at the specified address and the next one. A fixed data is recognized
by the presence of the dot, for example: 2. or 1.5. A long variable is automatically recognized
when its size is outside the 16-bit integer range or in case of smaller values by the presence of
the suffix L, for example: 200L or –1L.

 Examples:

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var),dm = 1000000;// write 1000000 (0xF4240) in the CPOS parameter i.e.

 // 0x4240 at address 0x29E and 0xF at next address
0x29F

(user_var),dm = -1;// write -1 (0xFFFF) in CPOS(L). CPOS(H) remains unchanged

(user_var),dm = -1L;// write –1 seen as a long variable (0xFFFFFFFF) in CPOS i.e.

 // CPOS(L) = 0xFFFF and CPOS(H) = 0xFFFF

user_var = 0x2A0; // write CSPD address in pointer variable user_var

(user_var),dm = 1.5; // write 1.5 (0x18000) in the CSPD parameter i.e.

 // 0x8000 at address 0x2A0 and 0x1 at next address 0x2A1

• In an indirect addressing, if the pointer variable if followed by + sign, it is automatically
incremented by 1 or 2 depending on the data type: 1 for integer, 2 for fixed or long data.

© ElectroCraft 2013 229 MPD User Manual

 Examples:

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var+),dm = 1000L; // write 1000 seen as long in CPOS, then increment

 // user_var by 2

(user_var+),dm = 1000; // write 1000 seen as int at address 0x29A (0x29E+2) ,

 // then increment user_var by 1

MPL Data categories:

MPL Registers

MPL Parameters

MPL Variables

User Variables

Basic Concepts next topics:

Memory Map – Firmware version FAxx

Memory Map – Firmware version FBxx

AUTORUN mode

See also:

Basic Concepts

MPL Description

© ElectroCraft 2013 230 MPD User Manual

6.2.1.6.1. MPL Registers

There are 3 categories of MPL registers:

• Configuration registers

• Command registers

• Status registers

The configuration registers contain essential configuration information like motor and sensors type, or
basic operation settings like PWM mode, motor start method, etc. The configuration registers must be set
up during the setup part before the ENDINIT instruction

The command registers hold configuration settings that may be changed during motion. These settings
refer to the activation/deactivation of software protections, to the use of MPL interrupts and to
communication options.

The status registers provide information about drive/motor condition: errors and protections triggered,
communication, active motion mode and control loops, MPL interrupts. The status registers can be used
to detect events and to make decisions in a MPL program.

Configuration registers (R/W):

ACR – Auxiliary Control Register. Defines extra settings like: the configuration for automatic start and the
external reference, operation options for the S-curve and the electronic camming modes.

OSR – Operating Settings Register. Defines some specific operating settings regarding motor control and
data acquisition

SCR – System Configuration Register. Defines the basic application configuration regarding the motor
type and the feedback sensors used

UPGRADE – Upgrade Register. Defines new options and extended features which are activated when
their corresponding bits are set to 1

Command registers (R/W):

CCR – Communication Control Register. Contains settings for the SPI link with the EEPROM

ICR – Interrupt Control Register. Enables/disables MPL interrupts

MCR – Motion Command Register. Configures the motion modes: reference mode, active control loops,
positioning type - absolute or relative, etc.

PCR.7-0 – Protections Control Register. Activates different drive/motor protections like: over-current, I2t
drive and motor, over- and under-voltage and over-temperature.

Status registers (RO):

AAR – Axis Address Register. Contains the Axis ID and the group ID of the drive/motor.

CBR – CAN Baud rate Register. Contains the current settings for CANbus baud-rate.

CER – Communication Error Register. Contains error flags for the communication channels.

CSR – Communication Status Register. Contains status flags for the communication channels.

ISR – Interrupt Status Register. Contains interrupt flags set by the MPL interrupt conditions.

© ElectroCraft 2013 231 MPD User Manual

MER – Motion Error Register. Groups all the errors conditions.

MSR – Motion Status Register. Gives indications about the motion status and some specific events like:
control error condition, position wrap-around, limit switches and captures triggered by programmed
transitions, etc.

PCR.14-8 – Protections Control Register. Contains flags set by the protections set in PCR.7-0.

SRL – Status Register Low. Low part of a 32-bit register grouping together all the key status information
concerning the drive/motor

SRH – Status Register High. High part of a 32-bit register grouping together all the key status information
concerning the drive/motor

SSR – Slave Status Register. Groups initialization information related to slave axes commanded by the
motion controller

The MPL registers are treated like any other MPL parameter or variable in the MPL program. The
configuration and command registers may be read or written. The status registers may only be read.

Remark: The setup tools set automatically the configuration and command registers. The most important
status information is grouped in 2 registers: MER - the Motion Error Register and SRL, SRH – the Status
Register Low and High part. They have been specifically designed to provide you all the key information
about the drive/motor status.

See also:

MPL Data

MPL Parameters

MPL Variables

User Variables

© ElectroCraft 2013 232 MPD User Manual

6.2.1.6.2. MPL Parameters

The MPL parameters allow you to setup the parameters of the MPL environment according with your
application data. Though most of the MPL parameters have their own address, there are some that share
the same memory address. They are used in application configurations that exclude each other, and thus
are not needed at the same time.

Some MPL parameters must be setup during the initialization phase. They are used to define the real-
time kernel, including the PWM frequency and the control loops sampling periods, and should not be
changed after the execution of the ENDINIT command. The other parameters can be initialized, used and
changed any time, before or after the ENDINIT command.

See also:

MPL Data

MPL Registers

MPL Variables

User Variables

6.2.1.6.3. MPL Variables

The MPL variables provide you status information about the MPL environment like the motor position,
speed and current, the position, speed and current commands, etc. These values may be used to take
decisions in the motion program or for analysis and debug.

The MPL variables are read-only (RO). Modifying their value during motion execution may cause an
improper operation of the drive/motor. There are however, specific situations when some MPL variables
may also be written (R/W variables).

Most of the MPL variables are internally initialized after power-on, or during the setup phase up to the
execution of the ENDINIT command.

Activating the on-chip logger module, real-time data tracking can also be implemented for any of these
variables.

See also:

MPL Data

MPL Registers

MPL Parameters

User Variables

© ElectroC

Besides t
variables

The user

The addre
First integ
location. A
address is

Example:
 in

 lo

 fi

 in

Remark:

See also:

MPL Data

MPL Reg

MPL Para

MPL Varia

Craft 2013

6.2

he MPL pre-d
in any MPL in

variables type

ess of the us
ger variable t
A long or f
s the lowest o

:
nt user_va

ong user_v

ixed user_

nt user_va

you have to d

a

isters

ameters

ables

2.1.6.4.

defined varia
nstruction acc

e can be: inte

ser variables
takes addres
fixed variab
one.

ar1;

var2; // us

_var3; // us

ar4;

declare a use

23

MPL User

bles, you can
cepting variab

eger, fixed (po

is automatic
ss 0x3B0, ne
ble takes 2 c

// user_v

ser_var2 add

ser_var3 add

// user_v

er variable bef

33

Variables

n also define
bles of the sa

oint) or long (i

ally set in the
xt one 0x3B1

consecutive m

var1 address i

ress is 0x3B1

ress is 0c3B3

var4 address i

fore using it fi

your own us
me type.

integer) (see

e order of de
1, etc. An in

memory locat

is 0x3B0

1

3

is 0x3B5

first time.

MPD U

ser variables.

table below).

eclaration sta
nt variable t
tions. In this

User Manual

You can use

.

arting with 0x
akes one me
case the va

e your

03B0.
emory
ariable

© ElectroCraft 2013 234 MPD User Manual

6.2.1.7. Memory Map - Firmware FAxx

ElectroCraft drives/motors work with 2 separate address spaces: one for MPL programs and the other for
data. Each space accommodates a total of 64K 16-bit word.

The first 16K of the MPL program space (0 to 3FFFh) is reserved and can’t be used. The next 16K, from
4000h to 7FFFh are mapped to a serial SPI-connected EEPROM with the maximum size 32K bytes (seen
as 16K 16-bit words). The exact amount of EEPROM memory is specific for each drive/motor. This space
is used to store MPL programs, cam tables, the setup data and the product ID.

The recommended way to use the EEPROM memory space is:

• MPL programs from the beginning of the EEPROM, starting with first address 4000h

• Cam tables, after the MPL program, until the beginning of the setup data

• Setup data and product ID. Other data until the end of the EEPROM

Remarks:

• The space needed for the setup data and the product ID is automatically computed by PROconfig

• The overall dimension of a MPL program includes apart from the main section, the MPL interrupt
vectors table, the interrupt service routines (ISRs) for the MPL interrupts and the MPL functions

For most of the ElectroCraft drives/motors, the next 2K of the MPL program space from 8000h to 87FFh
represent the drive/motor internal RAM memory. From it, the first 270h, from 8000h to 826Fh are
reserved for the internal use. The rest from 8270h to 87FFh may be used to temporary store MPL
programs. The remaining MPL program space from 8800h to FFFFh is invalid. Some ElectroCraft drives
have an extended internal RAM going from 8000h to FFFFh. From it, the first 270h are reserved for the
internal use. In this case, the MPL programs space goes from 8270h to FFFFh.

The data memory space is used to store the MPL data (registers, parameters, variables), the cam tables
during runtime (after being copied from the EEPROM memory) and for data acquisitions. The MPL data
are stored in a reserved area, while the others are using the same internal RAM memory used for MPL
programs. Though physically the RAM memory is the same for both, the MPL programs and data, the first
2K are mapped at different address ranges: The MPL program space from 8000h to 87FFh is seen in the
data space from 800h to 9FFh. As the first 270h from it are reserved, the effective data memory space
goes from A70h to FFFh. Apart from this space, the drives with extended internal RAM have another 32k
of data memory, from 0x8000 to 0xFFFF.

Remark: As the same RAM memory is used both for MPL programs and for data, it is the user
responsibility to decide how to split these spaces in order to avoid their overlap.

The recommended way to use the RAM memory (both for MPL programs and data) is:

• MPL programs from the beginning of the SRAM memory

• Data acquisitions, after the MPL programs

• Cam tables, after data acquisitions, until the end of the RAM

In the case of the drives/motors with normal RAM memory, you should start by checking if or how much
space you need to reserve for cam tables, and use the rest of the SRAM for data acquisitions. As
concerns the MPL programs, it is highly preferable to store them in the EEPROM.

Remark: In configurations with feedback devices like the SSI or EnDat encoders, the MPL programs
must execute from SRAM memory. This is because these feedback devices are using the same SPI
interface to read the feedback position like the EEPROM, which is disabled after the execution of

© ElectroC

ENDINIT
into the R

Basic Con

AUTORU

See also:

Basic Con

MPL Desc

Craft 2013

command. T
RAM where it i

ncepts next to

N mode

ncepts

cription

Therefore, at
is executed

opics:

23

power-on, th

35

he MPL progrram needs to

MPD U

o be copied f

User Manual

from the EEP

PROM

© ElectroCraft 2013 236 MPD User Manual

6.2.1.8. Memory Map - Firmware FBxx

ElectroCraft drives/motors work with 2 separate address spaces: one for MPL programs and the other for
data. Each space accommodates a total of 64K 16-bit word.

The first 16K of the MPL program space (0 to 3FFFh) is reserved and can’t be used. The next 16K, from
4000h to 7FFFh are mapped to a serial SPI-connected EEPROM with the maximum size 32K bytes (seen
as 16K 16-bit words). The exact amount of EEPROM memory is specific for each drive/motor. This space
is used to store MPL programs, cam tables, the setup data and the product ID.

The recommended way to use the EEPROM memory space is:

• MPL programs from the beginning of the EEPROM, starting with first address 4000h

• Cam tables, after the MPL program, until the beginning of the setup data

• Setup data and product ID. Other data until the end of the EEPROM

Remarks:

• The space needed for the setup data and the product ID is automatically computed by
MotionPRO Developer

• The overall dimension of a MPL program includes apart from the main section, the MPL interrupt
vectors table, the interrupt service routines (ISRs) for the MPL interrupts and the MPL functions

For most of the ElectroCraft drives/motors, the next 4K of the MPL program space, from 9000h to 9FFFh,
represents the drive/motor internal RAM memory. The memory space may be used to temporary store
MPL programs.

The data memory space is used to store the PVT buffer, the cam tables during runtime (after being
copied from the EEPROM memory) and for data acquisitions. The MPL data are stored in a reserved
area, while the others are using the same internal RAM memory used for MPL programs.

Remark: As the same RAM memory is used both for MPL programs and for data, it is the user
responsibility to decide how to split these spaces in order to avoid their overlap.

The recommended way to use the RAM memory (both for MPL programs and data) is:

• MPL programs from the beginning of the SRAM memory

• Data acquisitions, after the MPL programs

• Cam tables, after data acquisitions, until the end of the RAM

You should start by checking if or how much space you need to reserve for cam tables, and use the rest
of the SRAM for data acquisitions. As concerns the MPL programs, it is highly preferable to store them in
the EEPROM.

Remark: In configurations with feedback devices like the SSI or EnDat encoders, the MPL programs
must execute from SRAM memory. This is because these feedback devices are using the same SPI
interface to read the feedback position like the EEPROM, which is disabled after the execution of
ENDINIT command. Therefore, at power-on, the MPL program needs to be copied from the EEPROM
into the RAM where it is executed

© ElectroC

Basic Con

AUTORU

See also:

Basic Con

MPL Desc

Craft 2013

ncepts next to

N mode

ncepts

cription

opics:

2337

MPD UUser Manual

© ElectroCraft 2013 238 MPD User Manual

6.2.1.9. AUTORUN Mode

The ElectroCraft drives/motors have 2 startup modes, at power on: AUTORUN and slave

In the AUTO(matic) RUN(ning) mode, the drive/motor reads the first EEPROM memory location at
address 0x4000 and checks if the binary code is 0x649C corresponding to the MPL instruction BEGIN. If
this condition is true, the MPL program saved in the EEPROM memory is executed starting with the next
instruction after BEGIN. If the condition is false, the drive/motor enters in the slave mode and waits to
receive commands from a host via a communication channel. The AUTORUN mode, offers the possibility
to execute automatically after power-on a MPL program saved into the drive/motor EEPROM memory.

In the slave mode, even if there is a valid MPL program in the EEPROM, this is not executed, because
the drive/motor forces the execution of the END command which stops the MPL program execution.

Some of the ElectroCraft drives/motors are automatically set in the AUTORUN mode. Others have a
dedicated switch or jumper through which you can set either the AUTORUN mode or the slave mode.

During a MPL program execution, a drive/motor can enter in the slave mode and stop the MPL program
execution in the following cases:

• After the execution of the END command

• After receiving a STOP command from an external device, via a communication channel

• After an entering in FAULT status, due to a protection triggered

Remark: When a drive/motor is set in AUTORUN mode, to change the MPL program you have to do to
the following operations:

Send via a communication channel the MPL command END, to stop the current program
execution, followed by AXISOFF to disable the drive power stage

Download the new MPL program

Reset the drive. The new MPL program will start to execute.

See also:

Basic Concepts

MPL Description

© ElectroCraft 2013 239 MPD User Manual

6.2.2. MPL Description

6.2.2.1. Overview

The MPL provides instructions for the following categories of operations:

• Motion programming and control. These instructions allow you to program ElectroCraft motion
controllers or programmable drives/motors in order to set different motion modes and trajectories.
These are divided into 2 categories function of how the motion reference is generated:

• Motion modes with reference provided by an external device via an analog input, pulse &
direction signals, a master encoder or via a communication channel

• Motion modes with reference computed by the internal reference generator. In this
category enter all the other motion modes

You can program one of the following motion modes:

• Trapezoidal Position Profile

• Trapezoidal Speed Profile

• S-Curve Profile

• Position-Time (PT) Interpolated

• Position-Velocity-Time (PVT) Interpolated

• External

• Electronic Gearing (alone or superposed with another motion mode)

• Electronic Camming

• Homing

• Contouring

• Test

• Linear Interpolation

• Vector Mode

and control their execution via a set of Motor Commands.

Remark: The Linear Interpolation and Vector Mode are coordinated motion modes available in
applications developed for ElectroCraft Motion Controller.

• Program flow control. In the MPL you can control the program execution in 3 ways:

• By setting an event to be monitored and waiting the event occurrence

• Through jumps and MPL function calls

• Through the MPL interrupts which can be triggered in certain conditions

• I/O handling

© ElectroCraft 2013 240 MPD User Manual

Firmware FAxx

• General-purpose I/O

• Special I/O: enable, capture and limit switch inputs

 Firmware FBxx

• General-purpose I/O

• Special I/O MC3: enable, capture and limit switch inputs

• Assignment and data transfer

• Setup 16 bit variable

• Setup 32 bit variable

• Arithmetic and logic manipulation

• Multi axis control

• Axis identification

• Axis synchronization

• Data transfer between axes

• Remote control

• Monitoring. You can check the motion progress as well as the drive/motor status via

• Position Triggers

• Status Register

• Error Register

• Messages sent to the host

• Slaves Management. From the motion controller application you can perform:

• Slaves Initialization

• Program events on slave axes and wait for their occurrence

• Homing and Function Calls from slave axes

• Slave Error Handling

• Miscellaneous including:

• Declare user variable

• Reset FAULT status

© ElectroCraft 2013 241 MPD User Manual

• Save actual setup data from RAM into EEPROM in the setup table

• Change the CAN bus and serial RS232 / RS485 communication settings

See also:

Basic Concepts

© ElectroCraft 2013 242 MPD User Manual

6.2.2.2. Motion programming – drives with built-in Motion Controller

6.2.2.2.1. Trapezoidal Position Profiles - MPL Programming Details

In the trapezoidal position profile, the load/motor is controlled in position. The built-in reference generator
computes a position profile with a trapezoidal shape of the speed, due to a limited acceleration. You
specify either a position to reach in absolute mode or a position increment in relative mode, plus the slew
(maximum travel) speed and the acceleration/deceleration rate. In relative mode, the position to reach
can be computed in 2 ways: standard (default) or additive. In standard relative mode, the position to
reach is computed by adding the position increment to the instantaneous position in the moment when
the command is executed. In the additive relative mode, the position to reach is computed by adding the
position increment to the previous position to reach, independently of the moment when the command
was issued. The additive relative mode is activated by setting ACR.11 = 1.

Remarks:

• The motion mode and its parameters become effective after the execution of the update
command UPD

• The additive relative mode is automatically disabled after an the update command UPD, which
sets ACR.11 = 0 restoring the standard relative mode

You can switch at any moment, including during motion, from another motion mode to the trapezoidal
position profile. This operation is possible due to the target update mode 0 TUM0 which is automatically
activated when a new motion mode is set.

During motion, you can change on the fly the position command, the slew speed and the
acceleration/deceleration rate. These changes become effective at next update command UPD.

Position profile with trapezoidal shape of the speed

Once set, the motion parameters are memorized. If you intend to use the same values as previously
defined for the acceleration rate, the slew speed, the position increment or the position to reach, you don’t
need to set their values again in the following trapezoidal profiles.

Remark: The additive mode for relative positioning is not memorized and must be set each time a new
additive relative move is set.

© ElectroCraft 2013 243 MPD User Manual

See also:

Trapezoidal Position Profiles – Related MPL Instruction and Data

Trapezoidal Position Profiles – On the fly change of the motion parameters

Trapezoidal Position Profiles – Automatic elimination of round-off errors

MPL Description

© ElectroCraft 2013 244 MPD User Manual

6.2.2.2.2. Trapezoidal Position Profiles - Related MPL Instructions
and Data

Parameters

CPOS Command position – desired position (absolute or relative) for the load. Measured in position
units.

CSPD Command speed – desired slew speed for the load. The command speed can have only positive
values. Measured in speed units.

CACC Command acceleration – desired acceleration / deceleration for the load. The command
acceleration can have only positive values. Measured in acceleration units

ACR Auxiliary Control Register – includes several MPL Programming options

Variables

TPOS Target load position – position reference computed by the reference generator at each
slow loop sampling period. Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at each slow
loop sampling period. Measured in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the
reference generator at each slow loop sampling period. Measured in acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units

ASPD_MT Actual motor speed. Measured in motor speed units Alternate name: ASPD

Instructions

CPR Command position is relative

CPA Command position is absolute

MODE PP Set position profile mode

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from the actual
values of position and speed reference (i.e. don’t update the reference values with
load/motor position and speed)

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from the actual
values of load/motor position and speed (i.e. update the reference values with load/motor
position and speed)

UPD Update motion parameters and start new motion mode

STOP Stop the motion

SRB Set/reset bits from a MPL data

© ElectroCraft 2013 245 MPD User Manual

Remarks:

• CSPD and CACC must be positive. Negative values are taken in modulus

• The difference between CPOS and TPOS values in modulus must be maximum 231-1.

• The sum between CSPD and CACC values must be maximum 32767.99998 (0x7FFF.FFFF) i.e.
the maximum value for fixed number

• Once a position profile is started, you can find when the motion is completed, by setting an event
on motion complete and waiting until this event occurs.

• In order to activate the TUM1 mode, execute the MPL instruction TUM1 AFTER the MODE PP
command and BEFORE the UPD command. When MODE PP is executed, it automatically sets
TUM0 mode. However, as the new motion mode becomes effective only after the UPD
command, a TUM1 command will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In open loop
control of steppers, TUM0 is ignored as there is no position and/or speed feedback

• In setup configurations where there is no transmission ratio between the motor and the load, it is
supposed that these are directly connected. In these cases: APOS_MT=APOS_LD and
ASPD_MT=ASPD_LD

Programming Example
// Position profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.3183; //acceleration rate = 1000[rad/s^2]

CSPD = 33.3333; //slew speed = 1000[rpm]

CPOS = 6000; //position command = 3[rot]

CPR; //position command is relative

SRB ACR 0xFFFF, 0x800; // and additive

MODE PP; // set trapezoidal position profile mode

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

See also:

Trapezoidal Position Profiles – MPL Programming Details

Trapezoidal Position Profiles – On the fly change of the motion parameters

Trapezoidal Position Profiles – Automatic elimination of round-off errors

MPL Description

© ElectroCraft 2013 246 MPD User Manual

6.2.2.2.3. Trapezoidal Position Profiles - On the fly change of the
motion parameters

In the trapezoidal position profile mode, the motion parameters CPOS, CSPD, CACC can be changed
any time during motion. The reference generator automatically re-computes the position trajectory in
order to reach the new commanded position, using the new values for slew speed and acceleration.

The figure below shows an example where slew speed and acceleration rate are changed, while the
commanded position is kept the same.

172

CPOS = 172
CSPD = 4
CACC = 1
UPD

CSPD = 8
CACC = 2
UPD

 Trapezoidal position profile. On-the-fly change of motion parameters

Programming Example
// Position profile already set. CACC and CSPD

// are changed during motion

CACC = 2; //acceleration rate = 2 [internal units]

CSPD = 8; //slew speed = 8 [internal units]

UPD; //execute immediate

If the trapezoidal position profile is already set and you intend to change only the motion parameters, you
don’t need to set again neither the motion mode with MPL instruction MODE PP, nor the target update
mode 1 (when required) with MPL instruction TUM1.

If during motion, a new position command is issued that requires reversing the motor movement, the
reference generator does automatically the following operations:

• stops the motor with the programmed deceleration rate

• accelerates the motor in the opposite direction till the slew speed is reached, or till the motor has
to decelerate

• stops the motor on the commanded position

See also:

Trapezoidal Position Profiles – MPL Programming Details

Trapezoidal Position Profiles – Related MPL Instruction and Data

Trapezoidal Position Profiles – Automatic elimination of round-off errors

© ElectroCraft 2013 247 MPD User Manual

MPL Description

© ElectroCraft 2013 248 MPD User Manual

6.2.2.2.4. Trapezoidal Position Profiles - Automatic elimination of
round-off errors

In trapezoidal position profile mode, the reference generator automatically eliminates the round-off errors,
which may occur when the commanded position cannot be reached with the programmed slew speed
and acceleration/deceleration rate. This situation is illustrated by the example below, where the position
feedback is an incremental encoder. Therefore, the internal units for position are [encoder counts], for
speed are [encoder counts / slow loop sampling], for acceleration are [encoder counts / square of slow
loop sampling]

Example:
The commanded position is 258 counts, with the slew speed 18 counts/sampling and the acceleration
rate 4 counts/sampling2. To reach the slew speed, two options are available:

• Accelerate to 16 in 4 steps, then from 16 to 18 in a 5th step. Acceleration space is 49 counts

• Accelerate from 0 to 2 in 1st step, then from 2 to 18 in 4 steps. Acceleration space is 41 counts

For the deceleration phase, the options and spaces are the same. But, no matter which option is used for
the acceleration and deceleration phases, the space that remains to be done at constant speed is not a
multiple of 18, i.e. the position increment at each step.

So, when to start the deceleration phase? Table below presents the possible options, and the expected
errors.

MPL comes with a different approach. It monitors the round-off errors and automatically eliminates them
by introducing, during deceleration phase, short periods where the target speed is kept constant. Hence,
the target position is always reached precisely, without any errors.

© ElectroCraft 2013 249 MPD User Manual

CPO S=258
CSP D=18
CACC=4

Trapezoidal Position profile. Automatic elimination of round-off errors

The figure above shows the target speed generated by MPL for the above example. During the
deceleration phase, the target speed:

• decelerates from 18 to 6 in 3 steps (target position advances by 36 counts)

• is kept constant for 1 step (target position advances by 6 counts)

• decelerates from 6 to 2 in one step (target position advances by 4 counts)

• decelerates from 2 to 0 in the last step (target position advances by 1 count)

Hence the deceleration space is 47 counts, which, added to 49 counts for acceleration phase and to the
162 counts for constant speed, gives exactly the 258-count commanded position.

See also:

Trapezoidal Position Profiles – MPL Programming Details

Trapezoidal Position Profiles – Related MPL Instruction and Data

Trapezoidal Position Profiles – On the fly change of the motion parameters

MPL Description

© ElectroCraft 2013 250 MPD User Manual

6.2.2.2.5. Trapezoidal Speed Profiles - MPL Programming Details

In the speed profile, the load/motor is controlled in speed. The built-in reference generator computes a
speed profile with a trapezoidal shape, due to a limited acceleration. You specify the jog speed (speed
sign specifies the direction) and the acceleration/deceleration rate. The load/motor accelerates until the
jog speed is reached. During motion, you can change on the fly the slew speed and/or the
acceleration/deceleration rate. The motion will continue until a STOP command. An alternate way to stop
motion is to set the jog speed to zero.

Speed profile with trapezoidal shape

Remark: The motion mode and its parameters become effective after the execution of the update
command UPD. Changes of the slew speed and/or acceleration/deceleration rate also become effective
at next update command.

You can switch at any moment, including during motion, from another motion mode to the trapezoidal
speed profile. This operation is possible due to the target update mode 0 TUM0 which is automatically
activated when a new motion mode is set.

Once set, the motion parameters are memorized. If you intend to use the same values as previously
defined for the acceleration rate and the jog speed, you don’t need to set their values again in the
following trapezoidal profiles.

See also:

Trapezoidal Speed Profiles – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 251 MPD User Manual

6.2.2.2.6. Trapezoidal Speed Profiles - Related MPL Instructions and
Data

Parameters

CSPD Command speed – desired slew speed for the load. The sign specifies the direction. Measured in
speed units

CACC Command acceleration – desired acceleration / deceleration for the load. The command
acceleration can have only positive values. Measured in acceleration units.

Variables

TPOS Target load position – position reference computed by the reference generator at each slow loop
sampling period. TPOS is computed by integrating the target speed TSPD.Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at each slow loop
sampling period. Measured in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the reference
generator at each slow loop sampling period. Measured in acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS.

ASPD_LD Actual load speed – measured in speed units.

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

Instructions

MODE SP Set speed profile mode

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from the actual values of
position and speed reference (i.e. don’t update the reference values with load/motor position and speed)

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from the actual values of
load/motor position and speed (i.e. update the reference values with load/motor position and speed)

UPD Update motion parameters and start new motion mode

STOP STOP the motion.

Remarks:

• The sum between CSPD and CACC values must be maximum 32767.99998 (0x7FFF.FFFF) i.e.
the maximum value for fixed number.

• After a STOP command or after setting jog speed command to zero, you can find when the
motion is completed, by setting an event on motion complete and waiting until this event occurs.

• In order to activate the TUM1 mode, execute the MPL instruction TUM1 AFTER the MODE SP
command and BEFORE the UPD command. When MODE SP is executed, it automatically sets
TUM0 mode. However, as the new motion mode becomes effective only after the UPD
command, a TUM1 command will overwrite the TUM0 mode

© ElectroCraft 2013 252 MPD User Manual

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In open loop
control of steppers, TUM0 is ignored as there is no position and/or speed feedback

• In setup configurations where there is no transmission ratio between the motor and the load, it is
supposed that these are directly connected. In these cases: APOS_MT=APOS_LD and
ASPD_MT=ASPD_LD

Programming Example
// Speed profile with position feedback on motor: 500 lines

// incremental encoder (2000 counts/rev)

CACC = 0.1591;//acceleration rate = 500[rad/s^2]

CSPD = 40;//jog speed = 1200[rpm]

MODE SP; // set trapezoidal speed profile mode

TUM1; //set Target Update Mode 1

UPD; //execute immediate

See also:

Trapezoidal Speed Profiles – MPL Programming Details

MPL Description

© ElectroCraft 2013 253 MPD User Manual

6.2.2.2.7. S-curve Profiles - MPL Programming Details

In the S-curve profile, the load/motor is controlled in position. The built-in reference generator computes a
position profile with an S-curve shape of the speed. This shape is due to the jerk limitation, leading to a
trapezoidal or triangular profile for the acceleration and an S-curve profile for the speed. You specify
either a position to reach in absolute mode or a position increment in relative mode, plus the slew
(maximum travel) speed, the maximum acceleration/deceleration rate and the jerk rate. The jerk rate is
set indirectly via the jerk time, which represents the time needed to reach the maximum acceleration
starting from zero.

Remarks:

• The motion mode and its parameters become effective after the execution of the update
command UPD

• The jerk rate results by dividing the maximum acceleration rate to the jerk time.

An S-curve profile must begin when load/motor is not moving. During motion the parameters should not
be changed. Therefore when executing successive S-curve commands, you should wait for the previous
motion to end before setting the new motion parameters and starting next motion. During an S-curve
execution, you can switch at any moment to another motion mode (except PVT and PT interpolated
modes) or stop the motion with a STOP command.

Following a STOP command, the deceleration phase can be done in 2 ways:

• Smooth, using an S-curve speed profile, when ACR.1 = 0 (default), or

• Fast using a trapezoidal speed profile, when ACR.1 = 1

Position profile with S-curve shape of the speed

© ElectroCraft 2013 254 MPD User Manual

Once set, the motion parameters are memorized. If you intend to use the same values as previously
defined for the acceleration rate, the slew speed, the position increment or the position to reach, you don’t
need to set their values again in the following trapezoidal profiles.

See also:

S Curve Profile – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 255 MPD User Manual

6.2.2.2.8. S Curve Profile - Related MPL Instructions and Data

Parameters

CPOS Command position – desired position (absolute or relative) for the load. Measured in position
units

CSPD Command speed – desired slew speed for the load. Measured in speed units

CACC Command acceleration – maximum desired acceleration / deceleration for the load. Measured in
acceleration units

CDEC Command deceleration for quick stop mode. Measured in acceleration units

TJERK Jerk time needed to accelerate from zero up to the CACC value. Measured in time units

ACR Auxiliary Control Register – includes several MPL Programming options

Variables

TPOS Target load position – position reference computed by the reference generator at each slow
loop sampling period. Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at each slow loop
sampling period. Measured in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the reference
generator at each slow loop sampling period. Measured in acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

Instructions

CPR Command position is relative

CPA Command position is absolute

MODE PSC Set S-curve mode.

UPD Update motion parameters and start new motion mode

STOP Stop the motion

SRB Set/reset bits from a MPL data

Remarks:

• CSPD, CACC and TJERK must be positive

• The difference between CPOS and TPOS values in modulus must be maximum 231-1.

• The sum between CSPD and CACC values must be maximum 32767.99998 (0x7FFF.FFFF) i.e.
the maximum value for fixed number

© ElectroCraft 2013 256 MPD User Manual

• Once a position profile is started, you can find when the motion is completed, by setting an event
on motion complete and waiting until this event occurs.

• The S-curve profile uses always TUM1 mode, i.e. preserves the values of TPOS and TSPD. If
these values don’t match with the actual feedback values, precede the S-curve command with
another motion command accepting TUM0 to update TPOS and TSPD. This command may be
for example a trapezoidal profile that keeps position unchanged

• In setup configurations where there is no transmission ratio between the motor and the load, it is
supposed that these are directly connected. In these cases: APOS_MT=APOS_LD and
ASPD_MT=ASPD_LD

Programming Example
// S-curve profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

TJERK = 50;//jerk = 2e+004[rad/s^3]

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//slew speed = 1000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PSC; // set S-curve profile mode

SRB ACR, 0xFFFE, 0x0000; //Stop using an S-curve profile

UPD; //execute immediate

!MC; WAIT!; //wait for completion

See also:

S Curve Profile – MPL Programming Details

MPL Description

© ElectroCraft 2013 257 MPD User Manual

6.2.2.2.9. Position-Time (PT) Interpolated - MPL Programming
Details

In the PT motion mode the load/motor is controlled in position. The built-in reference generator computes
a positioning path using a series of points. Each point specifies the desired Position, and Time, i.e.
contains a PT data. Between the PT points the reference generator performs a linear interpolation.

The PT Interpolated mode is typically used together with a host, which sends PT points via a
communication channel. Due to the interpolation, the PT mode offers the possibility to describe an
arbitrary position contour using a reduced number of points. It is particularly useful when the motion
reference is computed on the fly by the host like for example in vision systems. By reducing the number
of points, both the computation power and the communication bandwidth needed are substantially
reduced optimizing the costs. When the PT motion mode is used simultaneously with several
drives/motors having the time synchronization mechanism activated, the result is a very powerful multi-
axis system that can execute complex synchronized moves.

The PT motion mode can be started only when the previous motion is complete. However, you can switch
at any moment to another motion mode. The PT mode can be relative (following a CPR command) or
absolute (following a CPA command). In the absolute mode, each PT point specifies the position to
reach. The initial position may be either the current position reference TPOS or a preset value read from
the MPL parameter PVTPOS0. In the relative mode, each PT point specifies the position increment
relative to the previous point. In both cases, the time is relative to the previous point i.e. represents the
duration of a PT segment. For the first PT point, the time is measured from the starting of the PT mode.

Each time when a new PT point is read from a MPL program or received via a communication channel, it
is saved into the PT buffer. The reference generator empties the buffer as the PT points are executed.
The PT buffer is of type FIFO (first in, first out). The default length of the PT buffer is 7 PT points. The
drive/motor automatically sends messages to the host when the buffer is full, low or empty. The
messages contain the PT status (MPL variable PVTSTS). The host address is taken from the MPL
parameter MASTERID. The buffer full condition occurs when the number of PT points in the buffer is
equal with the buffer size. The buffer low condition occurs when the number of PT points in the buffer is
less or equal with a programmable value – the low level. The buffer empty condition occurs when the
buffer is empty and the execution of the last PT point is over. When the PT buffer becomes empty the
drive/motor keeps the position reference unchanged.

Remarks:

• The PVT and PT modes share the same buffer. Therefore the MPL parameters and variables
associated with the buffer management are the same.

• Before activating the PT mode, you must place at least one PT point in the buffer

• The buffer low condition is set by default when the last PT point from the buffer is read and starts to be
executed

• Both the PT buffer size and its start address are programmable via MPL parameters PVTBUFBEGIN
and PVTBUFLEN. Therefore if needed, the PT buffer size can be substantially increased.

Each PT point also includes a 7-bit integrity counter. The integrity counter value must be incremented by
the host by one, each time a new PT point is sent to the drive/motor. If the integrity counter error checking
is activated, the drive compares its internally computed integrity counter value with the one sent with the
PT point (i.e. with the PTP command). This comparison is done every time a PTP instruction is received.
If the values of the two integrity counters do not match, the integrity check error is triggered, the
drive/motor sends the PVTSTS to the host with PVTSTS.12 =1 and the received PT point is discarded.
Each time a PT point is accepted (the integrity counters match or the integrity counter error checking is
disabled), the drive automatically increments its internal integrity counter. The default value of the internal

© ElectroCraft 2013 258 MPD User Manual

integrity counter after power up is 0. Its current value can be read from the MPL variable PVTSTS (bits
6..0). The integrity counter can also be set to any value using MPL command SETPT.

See also:

PT – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 259 MPD User Manual

6.2.2.2.10. Position-Velocity-Time(PVT) Interpolated - MPL
Programming Details

In the PVT motion mode the load/motor is controlled in position. The built-in reference generator
computes a positioning path using a series of points. Each point specifies the desired Position, Velocity
and Time, i.e. contains a PVT data. Between the PVT points the reference generator performs a 3rd
order interpolation.

The PVT Interpolated mode is typically used together with a host, which sends PVT points via a
communication channel. Due to the 3rd order interpolation, the PVT mode offers the possibility to
describe complex position contours using a reduced number of points. It is particularly useful when the
motion reference is computed on the fly by the host like for example in vision systems. By reducing the
number of points, both the computation power and the communication bandwidth needed are
substantially reduced optimizing the costs. When the PVT motion mode is used simultaneously with
several drives/motors having the time synchronization mechanism activated, the result is a very powerful
multi-axis system that can execute complex synchronized moves.

A key factor for getting a correct positioning path in PVT mode is to set correctly the distance in time
between the points. Typically this is 10-20ms, the shorter the better. If the distance in time between the
PVT points is too big, the 3rd order interpolation may lead to important variations compared with the
desired path.

The PVT motion mode can be started only when the previous motion is complete. However, you can
switch at any moment to another motion mode. The PVT mode can be relative (following a CPR
command) or absolute (following a CPA command). In the absolute mode, each PVT point specifies the
position to reach. The initial position may be either the current position reference TPOS or a preset value
read from the MPL parameter PVTPOS0. In the relative mode, each PVT point specifies the position
increment relative to the previous point. In both cases, the time is relative to the previous point i.e.
represents the duration of a PVT segment. For the first PVT point, the time is measured from the starting
of the PVT mode.

Each time when a new PVT point is read from a MPL program or received via a communication channel,
it is saved into the PVT buffer. The reference generator empties the buffer as the PVT points are
executed. The PVT buffer is of type FIFO (first in, first out). The default length of the PVT buffer is 7 PVT
points. Each entry in the buffer is made up of 9 words, so the default length of the PVT buffer in terms of
how much memory space is reserved is 63 (3Fh) words. The drive/motor automatically sends messages
to the host when the buffer is full, low or empty. The messages contain the PVT status (MPL variable
PVTSTS). The host address is taken from the MPL parameter MASTERID. The buffer full condition
occurs when the number of PVT points in the buffer is equal with the buffer size. The buffer low condition
occurs when the number of PVT points in the buffer is less or equal with a programmable value – the low
level. The buffer empty condition occurs when the buffer is empty and the execution of the last PVT point
is over. When the PVT buffer becomes empty the drive/motor:

• Remains in PVT mode if the velocity of last PVT point executed is zero and waits for new points
to receive

• Enters in quick stop mode if the velocity of last PVT point executed is not zero

Therefore, a correct PVT sequence must always end with a last PVT point having velocity zero.

Remarks:

• The PVT and PT modes share the same buffer. Therefore the MPL parameters and variables
associated with the buffer management are the same.

• Before activating the PVT mode, you must place at least one PVT point in the buffer

© ElectroCraft 2013 260 MPD User Manual

• The buffer low condition is set by default when the last PVT point from the buffer is read and starts to
be executed

• Both the PVT buffer size and its start address are programmable via MPL parameters PVTBUFBEGIN
and PVTBUFLEN. Therefore if needed, the PVT buffer size can be substantially increased.

Each PVT point also includes a 7-bit integrity counter. The integrity counter value must be incremented
by the host by one, each time a new PVT point is sent to the drive/motor. If the integrity counter error
checking is activated, the drive compares its internally computed integrity counter value with the one sent
with the PVT point (i.e. with the PVTP command). This comparison is done every time a PVTP instruction
is received. If the values of the two integrity counters do not match, the integrity check error is triggered,
the drive/motor sends the PVTSTS to the host with PVTSTS.12 =1 and the received PVT point is
discarded. Each time a PVT point is accepted (the integrity counters match or the integrity counter error
checking is disabled), the drive automatically increments its internal integrity counter. The default value of
the internal integrity counter after power up is 0. Its current value can be read from the MPL variable
PVTSTS (bits 6..0). The integrity counter can also be set to any value using MPL command SETPVT.

See also:

PVT – Related MPL Instructions and Data

MPL Description

6.2.2.2.11. Motion PT - MPL Instructions and Data

Parameters

MASTERID Contains the axis ID of the host/master where the drive/motor must send the PT
messages. It must be set before starting the PT mode. The MASTERID value must be set as: host ID <<
4 + 1, where host ID is a number between 1 and 255 representing the host ID. By default, after power-on
the host ID is set equal with the drive address causing all the PT messages to be sent via RS-232

PVTBUFBEGIN Specifies the start address of the PT buffer

PVTBUFLEN Specifies the PT buffer length expressed in PT points

PVTPOS0 Specifies for absolute mode, the initial position from which to start computing the distance
to move up to the first PT point. An alternate option is to consider TPOS as initial position. Selection
between these 2 options is done at PT initialization via MPL command SETPT. The default value of
PVTPOS0 is 0.

PVTSENDOFF When set to 1, disables transmission of messages during PT mode. By default is set to 0
and the transmission is enabled

Variables

PVTSTS Contains the PT motion mode status.

© ElectroCraft 2013 261 MPD User Manual

PVTSTS bit description

PVTMODE PVT operation mode as was set with the SETPT command

TPOS Target load position – position reference computed by the reference generator at each
slow loop sampling period. Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at each slow
loop sampling period. Measured in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the
reference generator at each slow loop sampling period. Measured in acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

© ElectroC

Instructio

SETPT va

P

CPR

CPA

MODE PT

TUM1

TUM0

PTP Posi

P
po
po

T

C
an

UPD U

STOP St

Craft 2013

ons

alue Set PT

PT operation m

PT mo

PT mo

T Set PT

Target Upda
position and
and speed)

Target Upda
load/motor p
speed)

ition, Time, C

osition – is
osition to rea
osition value

ime – is the P

Counter – is t
nd 127.

pdate motion

top motion

T operation as

mode (a copy

de is relative

de is absolute

T motion mode

ate Mode 1 (T
speed refere

ate Mode 0 (T
osition and s

Counter Def

the PT poin
ach. In relativ
is a 32-bit lon

PT point time

the PVT point

n parameters

26

s specified by

y of value is s

e

e.

TUM1). Gene
ence (i.e. don

TUM0). Gene
speed (i.e. up

fines a PT poi

nt position, m
ve mode, it is
ng integer.

measured in

t integrity cou

and start new

62

y value:

saved in the M

erates new t
n’t update the

erates new t
pdate the ref

int, where:

measured in p
 the position

time units. T

unter. It is a 7

w motion mod

MPL variable

trajectory sta
e reference v

trajectory sta
ference value

position unit
increment fr

The time valu

7-bit unsigned

de

MPD U

PVTMODE)

rting from th
values with lo

rting from th
es with load/m

ts. In absolu
rom the previ

ue is a 16-bit u

d integer with

User Manual

e actual valu
oad/motor po

e actual valu
motor position

ute mode, it
ious PT point

unsigned inte

h values betw

ues of
osition

ues of
n and

is the
t. The

eger

ween 0

© ElectroCraft 2013 263 MPD User Manual

Remarks:

• When a PT sequence of points is executed from a MPL program, the first PTP commands are
processed one after the other, until the PT buffer fills up. At this point the MPL program stops
until the PT buffer starts to empty. Therefore, the next PTP commands are processed in the
cadence of the PT points execution. At the end of the sequence, the PT buffer starts to empty
and next MPL instructions start to execute. This may lead to incorrect operation if for example a
new motion mode is set while there are still points in the PT buffer waiting to be executed. In
order to avoid this situation, it is mandatory to end the PVT sequence with an event on motion
complete and wait until this event occurs.

• In order to activate the TUM1 mode, execute the MPL instruction TUM1 AFTER the MODE PT
command and BEFORE the UPD command. When MODE PT is executed, it automatically sets
TUM0 mode. However, as the new motion mode becomes effective only after the UPD
command, a TUM1 command will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In open loop
control of steppers, TUM0 is ignored as there is no position and/or speed feedback

• In setup configurations where there is no transmission ratio between the motor and the load, it is
supposed that these are directly connected. In these cases: APOS_MT=APOS_LD and
ASPD_MT=ASPD_LD

Programming Example
// PT sequence. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

SETPVT 0xC000; //Clear PT buffer, disable counter check

 //Don’t change counter & buffer low condition

MODE PT; // Set PT Mode

TUM1;//Start from actual value of position reference

CPR;

PTP 2000L, 100U, 0; //PT(1[rot], 0.1[s])

UPD; //Execute immediate

PTP 0L, 100U, 0; //PT(1[rot],0.2[s])

PTP -2000L, 100U, 0; //PT(0[rot],0.3[s])

!MC; WAIT!; //wait for completion

See also:

PT – MPL Programming Details

MPL Description

© ElectroCraft 2013 264 MPD User Manual

6.2.2.2.12. Mode PVT - Related MPL Instructions and Data

Parameters

MASTERID Contains the axis ID of the host/master where the drive/motor must send the PVT
messages. It must be set before starting the PVT mode. The MASTERID value must be set as:
host ID << 4 + 1, where host ID is a number between 1 and 255 representing the host ID. By
default, after power-on the host ID is set equal with the drive address causing all the PVT
messages to be sent via RS-232

PVTBUFBEGIN Specifies the start address of the PVT buffer

PVTBUFLEN Specifies the PVT buffer length expressed in PVT points

PVTPOS0 Specifies for absolute mode, the initial position from which to start computing the distance
to move up to the first PVT point. An alternate option is to consider TPOS as initial position.
Selection between these 2 options is done at PVT initialization via MPL command SETPVT. The
default value of PVTPOS0 is 0.

PVTSENDOFF When set to 1, disables transmission of messages during PVT mode. By default is set to
0 and the transmission is enabled

© ElectroCraft 2013 265 MPD User Manual

Variables

PVTSTS Contains the PVT motion mode status.

PVTSTS bit description

PVTMODE PVT operation mode as was set with the SETPVT command

TPOS Target load position – position reference computed by the reference generator at each slow
loop sampling period. Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at each slow loop
sampling period. Measured in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the reference
generator at each slow loop sampling period. Measured in acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

© ElectroC

Instructio

SETPVT

P

CPR PV

CPA PV

MODE PV

TUM1

TUM0

PVTP Pos

UPD U

Craft 2013

ons

value

PVT operation

VT mode is re

VT mode is a

VT Set PV

Target Upda
position and
and speed)

Target Upda
load/motor p
speed)

sition, Veloc

Position – is
position to re
position valu
8388607. Va

Velocity – is
command sp

Time – is the
having values

Counter – is
and 127.

pdate motion

Set PVT op

n mode (a cop

elative

absolute

VT motion mo

ate Mode 1 (T
speed refere

ate Mode 0 (T
osition and s

city, Time, Co

s the PVT po
each. In relativ
ue is a signe
lues outside t

 the PVT poin
peed CSPD an

e PVT point ti
s between 1 a

 the PVT poin

n parameters

26

eration as sp

py of value is

de.

TUM1). Gene
ence (i.e. don

TUM0). Gene
speed (i.e. up

ounter D

oint position,
ve mode, it is

ed long integ
this range are

nt velocity, m
nd target spe

me measured
and 511.

nt integrity co

and start new

66

ecified by val

s saved in the

erates new t
n’t update the

erates new t
pdate the ref

Defines a PVT

measured in
s the position
er limited to
e truncated ca

easured in sp
ed TSPD

d in time uni

ounter. It is a 7

w motion mod

lue:

e MPL variabl

trajectory sta
e reference v

trajectory sta
ference value

T point, wher

 position un
increment fro
24 bits, i.e.

ausing unpred

peed units. T

ts The time v

7-bit unsigned

de

MPD U

le PVTMODE

rting from th
values with lo

rting from th
es with load/m

re:

nits. In absol
om the previo

in the range
dictable resu

The velocity i

value is a 9-b

d integer with

User Manual

E)

e actual valu
oad/motor po

e actual valu
motor position

ute mode, it
ous PVT poin
e – 8388608
lts.

s a fixed valu

bit unsigned in

h values betw

ues of
osition

ues of
n and

is the
t. The

8 to +

ue like

nteger

ween 0

© ElectroCraft 2013 267 MPD User Manual

STOP Stop the motion

Remarks:

• When a PVT sequence of points is executed from a MPL program, the first PVTP commands are
processed one after the other, until the PVT buffer fills up. At this point the MPL program stops
until the PVT buffer starts to empty. Therefore, the next PVTP commands are processed in the
cadence of the PVT points execution. At the end of the sequence, the PVT buffer starts to empty
and next MPL instructions start to execute. This may lead to incorrect operation if for example a
new motion mode is set while there are still points in the PVT buffer waiting to be executed. In
order to avoid this situation, it is mandatory to end the PVT sequence with an event on motion
complete and wait until this event occurs.

• In order to activate the TUM1 mode, execute the MPL instruction TUM1 AFTER the MODE PVT
command and BEFORE the UPD command. When MODE PVT is executed, it automatically sets
TUM0 mode. However, as the new motion mode becomes effective only after the UPD
command, a TUM1 command will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In open loop
control of steppers, TUM0 is ignored as there is no position and/or speed feedback

• In setup configurations where there is no transmission ratio between the motor and the load, it is
supposed that these are directly connected. In these cases: APOS_MT=APOS_LD and
ASPD_MT=ASPD_LD

Programming Example
// PVT sequence. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

MASTERID = 4081; // Set host address to 255 (255<<4+1)

SETPVT 0xC000; //Clear PVT buffer, disable counter check

 //Don’t change counter & buffer low condition

MODE PVT; // Set PVT Mode

TUM1;//Start from actual value of position reference

CPR; // Relative mode

PVTP 400L, 60, 10U, 0;//PVT(0.2[rot], 1800[rpm], 0.01[s])

UPD; //Execute immediate

PVTP 400L, 0, 10U, 0;//PVT(0.4[rot], 0[rpm], 0.02[s])

!MC; WAIT!; //wait for completion

See also:

PVT – MPL Programming Details

MPL Description

© ElectroCraft 2013 268 MPD User Manual

6.2.2.2.13. External - MPL Programming Details

In the external modes, you program the drives/motors to work with an external reference provided by
another device. There are 3 types of external references:

• Analogue – read by the drive/motor via a dedicated analogue input (10-bit resolution)

• Digital – computed by the drive/motor from:

• Pulse & direction signals

• Quadrature signals like A, B signals of an incremental encoder

• Online – received online via a communication channel from a host and saved in a dedicated
MPL variable

When the reference is analogue or online, you can set a:

• Position external mode, where the motor is controlled in position and the external reference is
interpreted as a position reference

• Speed external mode, where the motor is controlled in speed and the external reference is
interpreted as a speed reference

• Torque external mode, where the motor is controlled in torque and the external reference is
interpreted as a current reference.

• Voltage external mode, where the motor is controlled in voltage and the external reference is
interpreted as a voltage reference.

When the external reference is digital, the option for the input signals: pulse & direction or quadrature
encoder is established during the drive/motor setup. The drive/motor performs only position control
having as goal to follow the position reference computed from the input signals with a preset gear ratio. In
this case, the drive/motor actually works in electronic gearing mode, where you can find further details.

In position external mode with analogue or online reference, you can limit the maximum speed at sudden
changes of the position reference and thus to reduce the mechanical shocks. This feature is activated by
setting UPGRADE.2=1 and the maximum speed value in CSPD.

In speed external mode with analogue or online reference, you can limit the maximum acceleration at
sudden changes of the speed reference and thus to get a smoother transition. This feature is activated by
setting UPGRADE.2=1 and the maximum acceleration value in CACC.

In torque or voltage external mode with analogue reference, you can choose how often to read the
analogue input: at each slow loop sampling period or at each fast loop sampling period.

When using the analogue reference, during the setup phase, you specify the reference values
corresponding to the upper and lower limits of the analogue input. Depending on the control mode
selected, these values may be position or speed or torque or voltage references. You may also select a
dead-band symmetrical interval and it’s center point inside the analogue input range. While the analogue
signal is inside the dead-band interval, the output reference is kept constant and equal with value
corresponding to the dead-band center point. This option is especially useful when you need to set a
precise reference, which doesn’t change in the presence of some noise on the analogue input signal. If
dead-band width is set to zero, the dead-band is disabled.

Remark: Setup tools like PROconfig, automatically compute the value of the MPL parameters needed to
convert the analogue input range into the desired reference range.

© ElectroCraft 2013 269 MPD User Manual

See also:

External – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 270 MPD User Manual

6.2.2.2.14. External - MPL Instructions and Data

Parameters

CADIN Half of the reference range expressed in internal units, divided by 2SFTADIN. The
division result should lead to a value less than 32767. Depending on control mode selected, the
reference range can be a:

• Position range expressed in position units

• Speed range expressed in speed units

• Torque range expressed in current units

• Voltage range expressed in voltage command units

SFTADIN The smallest power of 2 for which:

 (Half of the reference range in internal units) / 2STFADIN < 32767

AD5OFF Reference value expressed in internal units, corresponding to the lower limit of the analogue
input. Depending on control mode selected, the reference value can be a:

• Position value expressed in position units

• Speed value expressed in speed units

• Torque value expressed in current units

• Voltage value expressed in voltage command units

FILTER1 Cutoff frequency for the low-pass filter on analogue input, computed with:

FILTER1 = 32767 * (1 - exp(-fc*T)),

where fc is the cutoff frequency in radians/s

 T is the slow loop sampling period in seconds.

 Remark: For the external torque mode with analogue input read in fast loop, T is the fast loop
sampling period in seconds.

LEVEL_AD5 Dead-band point in internal units computed with:

LEVEL_AD5=(DB_Point–InputLow)*65472/InputRange

where DB_Point – is the dead band point expressed in V

 InputLowLimit – is the low limit of the drive/motor analogue input expressed in V

 InputRange – s the drive/motor analogue input range expressed in V.

E_LEVEL_AD5 Dead-band range in internal units computed with formula:

E_LEVEL_AD5 = DB_Range * 65472 / InputRange,

where DB_Range – is the desired dead-band range expressed in V

 InputRange – is the drive/motor analogue input range expressed in V.

UPGRADE MPL register. When UPGRADE.2=1, a speed limitation may be set in position external
mode and an acceleration limitation in speed external mode. When UPGRADE.2=0,
speed or acceleration limitation is disabled

© ElectroCraft 2013 271 MPD User Manual

CSPD Maximum speed in position external when UPGRADE.2=1

CACC Maximum acceleration in speed external when UPGRADE.2=1

Variables

AD5 16-bit unsigned integer value representing the value read from the analogue input. The
output of the 10-bit A/D converter is set in the 10 MSB (most significant bits) of the AD5

EREFP MPL variable where an external device writes the position reference in external mode on-line.
Measured in position units

EREFS MPL variable where an external device writes the speed reference in external mode on-line.
Measured in speed units

EREFT MPL variable where an external device writes the torque reference in external mode on-line.
Measured in current units

EREFV MPL variable where an external device writes the voltage reference in external mode on-line.
Measured in voltage command units

TPOS Target load position – position reference computed by the reference generator at each
slow loop sampling period, when position external mode is performed. TPOS is set
function of the analogue input value, with analogue reference or with the EREFP value
with online reference. Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at each slow
loop sampling period, when position or speed external mode is performed. In speed
control, TSPD is set function of the analogue input value, with analogue reference or with
the EREFS value with online reference. Measured in speed units In position control,
TSPD is computed as the position variation over a slow loop sampling period. Measured
in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the
reference generator at each slow loop sampling period, when position or speed external
mode is performed. Measured in acceleration units

IQREF Current reference – updated at each fast or slow loop function of the analogue input
value or set with EREFT value, when torque external mode is performed. Measured in
current units

UQREF Voltage reference – updated at each fast or slow loop function of the analogue input
value or set with EREFV value, when voltage external mode is performed. Measured in
voltage command units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

IQ Motor current – measured in current units

Instructions

MODE PE Set position external mode

© ElectroCraft 2013 272 MPD User Manual

MODE GS Set position external mode with digital reference

MODE SE Set speed external mode

MODE TES Set torque external mode with reference read in slow loop

MODE TEF Set torque external mode with reference read in fast loop

MODE VES Set voltage external mode with reference read in slow loop

EXTREF 0 Set external reference type on-line

EXTREF 1 Set external reference type analogue

EXTREF 2 Set external reference type digital

UPD Update motion parameters and start new motion mode

STOP Stop motion

Remarks:

• In the absence of an external device, EREFP, EREFS, EREFT, EREFV may also be used as
MPL parameters through which you can set a position, speed, torque or voltage reference in the
external mode online. This is a simple way to impose step references

• The MPL variables EREFP, EREFS, EREFT, EREFV are alternate ways to address the MPL
variable EREF in which the external devices must place the reference. The new mnemonics have
been added to clearly differentiate how EREF is interpreted function of control mode selected:

o Position control: EREFP = EREF. EREFP is a 32-bit long integer

o Speed control: EREFS=EREF. EREF is a 32-bit fixed

o Torque control: EREFT = EREF(H). EREFT is a 16-bit integer

o Voltage control: EREFV = EREF(H). EREFV is a 16-bit integer

• CSPD and CACC must be positive

• The sum between CSPD and CACC values must be maximum 32767.99998 (0x7FFF.FFFF) i.e.
the maximum value for fixed number

• In setup configurations where there is no transmission ratio between the motor and the load, it is
supposed that these are directly connected. In these cases: APOS_MT=APOS_LD and
ASPD_MT=ASPD_LD

© ElectroCraft 2013 273 MPD User Manual

Programming Example 1
// External mode. Read position reference from the analogue input

// Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

MODE PE; //External position

CSPD = 100;// Limit = 3000[rpm]

SRB UPGRADE, 0xFFFF, 0x0004; //UPGRADE.2 = 1

UPD; //execute immediate

Programming Example 2
// External mode online. Read speed reference from variable EREFS

// Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

EREFS = 33.3333;// EREFS initial = 1000[rpm]

EXTREF 0;

MODE SE; //External speed

CACC = 0.3183;// Limit = 1000[rad/s^2]

SRB UPGRADE, 0xFFFF, 0x0004; //UPGRADE.2 = 1

UPD; //execute immediate

See also:

External – MPL Programming Details

MPL Description

© ElectroCraft 2013 274 MPD User Manual

6.2.3. Electronic Gearing - MPL Programming Details

In the electronic gearing a drive/motor may operate as master or as slave.

When set as master, the drive/motor sends its position via a multi-axis communication channel, like the
CANbus. When set as slave, the drive/motor follows the master position with a programmable gear ratio.

Master operation

The master operation can be enabled with the MPL command SGM followed by an UPD (update) and
can be disabled by the MPL command RGM followed by an UPD. In both cases, these operations have
no effect on the motion executed by the master.

Once at each slow loop sampling time interval, the master sends either its load position APOS (if OSR.15
= 0) or its position reference TPOS (if OSR.15 = 1) to the axis or the group of axes specified in the MPL
parameter SLAVEID. The SLAVEID contains either the axis ID of one slave or the value of a group
ID+256 i.e. the group of slaves to which the master should send its data.

Remark: The group ID is an 8-bit unsigned value. Each bit set to 1 represents a group: bit 0 – group 1, bit
1 – group 2, etc. In total there are 8 groups. For example, if the master sends its position to group 3, the
group ID = 4 (00000100b) and the SLAVEID is 4+256 = 260.

The master operation can be synchronized with that of the slaves. The synchronization process is
performed in two steps. First, the master sends a synchronization message to all axes, including to itself.
When this message is received, all the axes read their own internal time. Next, the master sends its
internal time to all the slaves, which compare it with their own internal time. If there are differences, the
slaves correct slightly their sampling periods in order to keep them synchronized with those of the master.
As effect, when synchronization procedure is active, the execution of the control loops on the slaves is
synchronized with those of the master within a 10μs time interval. Due to this powerful feature, drifts
between master and slave axes are eliminated. The synchronization procedure is activated with the MPL
command SETSYNC value where value represents the time interval in internal units between the
synchronization messages sent by the master. Recommended value is 20ms.

If the master is going to be activated with slaves already set in electronic gearing, an initialization is
necessary before enabling the master operation: the master must set the MPL parameter MPOS0 on all
the slaves with a non-zero value, for example 1.

Slave operation

The slaves can get the master position in two ways:

1. Via a communication channel, from a drive/motor set as master

2. Via an external digital reference of type pulse & direction (if ACR.2=1) or quadrature encoder (if
ACR.2 = 0). Both options have dedicated inputs. The pulse & direction signals are usually
provided by an indexer and must be connected to the pulse & direction inputs of the drive/motor.
The quadrature encoder signals are usually provided by an encoder on the master and must be
connected to the 2nd encoder inputs.

You can activate the first option with the MPL command: EXTREF 0 and the second option with the MPL
command EXTREF 2. Both become effective at the next UPD command.

In slave mode the drive/motor performs a position control. At each slow loop sampling period, the slave
computes the master position increment and multiplies it with its programmed gear ratio. The result is the
slave position reference increment, which added to the previous slave position reference gives the new
slave position reference.

Remark: The slave executes a relative move, which starts from its actual position

© ElectroCraft 2013 275 MPD User Manual

The gear ratio is specified via 3 MPL parameters: GEAR, GEARSLAVE and GEARMASTER.
GEARSLAVE and GEARMASTER represent the numerator and denominator of the Slave / Master ratio.
GEARSLAVE is a signed integer, while GEARMASTER is an unsigned integer. GEARSLAVE sign
indicates the direction of movement: positive – same as the master, negative – reversed to the master.
GEAR is a fixed value containing the result of the ratio i.e. the result of the division GEARSLAVE /
GEARMASTER. GEAR is used to compute the slave reference increment, while GEARSLAVE and
GEARMASTER are used by an automatic compensation procedure which eliminates the round off errors
which occur when the gear ratio is an irrational number like: 1/3 (Slave = 1, Master = 3).

The MPL parameter MASTERRES provides the master resolution which is needed to compute correctly
the master position and speed (i.e. the position increment). MASTERRES is a 32-bit long integer value,
expressed in the master position units. If master position is not cyclic (i.e. the resolution is equal with the
whole 32-bit range of position), set master resolution to 0x80000001.

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the master
position is set by default to 0. It may be changed to a different value by writing the desired value in the
MPL variable APOS2.

MPL commands REG_ON/REG_OFF enable/disable the superposition of the electronic gearing mode
with a second motion mode. When this superposed mode activated, the position reference is computed
as the sum of the position references for each of the 2 superposed motions.

You may enable the superposed mode at any moment, independently of the activation/deactivation of the
electronic gearing slave. If the superposed mode is activated during an electronic gearing motion, any
subsequent motion mode change is treated as a second move to be superposed over the basic electronic
gearing move, instead of replacing it. If the superposed mode is activated during another motion mode, a
second electronic gearing mode will start using the motion parameters previously set. This move is
superposed over the first one. After the first move ends, any other subsequent motion will be added to the
electronic gearing.

When you disable the superposed mode, the electronic gearing slave move is stopped and the
drive/motor executes only the other motion. If you want to remain in the electronic gearing slave mode,
set first the electronic gearing slave move and then disable the superposed mode.

You can smooth the slave coupling with the master, by limiting the maximum acceleration on the slave.
This is particularly useful when the slave is must couple with a master running at high speed. The feature
is activated by setting UPGRADE.2=1 and the maximum acceleration value in CACC.

Remark: When slave coupling with the master is complete SRH.12 = 1. The same bit is reset to zero if
the slave is decoupled from the master. The bit has no significance in other motion modes.

See also:

Electronic Gearing – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 276 MPD User Manual

6.2.3.1.1. Electronic Gearing - Related MPL Instructions and Data

Parameters

CACC Maximum acceleration in slave mode when UPGRADE.2=1

SLAVEID The axis or group ID to which the master sends its position. When group ID is used, the
SLAVEID is set with group ID value + 256.

GEAR Slave(s) gear ratio value. Negative values means opposite direction compared
with the master

GEARMASTER Denominator of gear ratio

GEARSLAVE Numerator of gear ratio. Negative values means opposite direction compared with the
master

MASTERRES Master resolution used by slave(s) Measured in master position units

MPOS0 Initialization parameter. Must be set by the master with a non-zero value before enabling
the master mode, if the slaves are already set in electronic gearing.

OSR MPL register. When OSR.15=1, the master sends the position reference. When
OSR.15=0, the master sends the actual load position

UPGRADE MPL register. When UPGRADE.2=1, an acceleration limitation may be set on slave.
When UPGRADE.2=0, the acceleration limitation is disabled

ACR Auxiliary Control Register – includes several MPL Programming options. When ACR.2 =
0, the external reference is quadrature encoder. When ACR.2 = 1, the external reference is pulse
& direction

Variables

MREF Master position received or computed by the slave(s). Measured in master position
units

MSPD Master speed computed by the slaves. Measured in master speed units

APOS2 Master position computed by the slaves from pulse & direction or quadrature encoder
inputs. At power-on it is set to 0. May be set to a different value, before starting the
master. Measured in master position units

TPOS Target position – position reference computed by the reference generator at each slow
loop sampling period. Measured in position units

TSPD Target speed – speed reference computed by the reference generator at each slow loop
sampling period. Measured in speed units

TACC Target acceleration – acceleration/deceleration reference computed by the reference
generator at each slow loop sampling period. Measured in acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

© ElectroCraft 2013 277 MPD User Manual

Instructions

EXTREF 0 Get master position via a communication channel

EXTREF 2 Compute master position from pulse & direction or quadrature encoder signals

MODE GS Set electronic gear slave mode

SGM Set electronic gear master mode

RGM Reset electronic gear master mode

REG_ON Enable superposed mode

REG_OFF Disable superposed mode

SETSYNC value Send synchronization messages at the time interval indicated by the 16-bit value.
Measured in time units

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from the actual values of
position and speed reference (i.e. don’t update the reference values with load/motor position and speed)

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from the actual values
of load/motor position and speed (i.e. updates the reference values with load/motor position and speed)

UPD Update motion parameters and start new motion mode

STOP Stop the motion

SRB Set/reset bits from a MPL data

Remarks:

• Do not change GEAR, GEARSLAVE and GEARMASTER during slave operation

• CACC must be positive

• In order to activate the TUM1 mode, execute the MPL instruction TUM1 AFTER the MODE GS
command and BEFORE the UPD command. When MODE GS is executed, it automatically sets
TUM0 mode. However, as the new motion mode becomes effective only after the UPD
command, a TUM1 command will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In open loop
control of steppers, TUM0 is ignored as there is no position and/or speed feedback

• In setup configurations where there is no transmission ratio between the motor and the load, it is
supposed that these are directly connected. In these cases: APOS_MT=APOS_LD and
ASPD_MT=ASPD_LD

© ElectroCraft 2013 278 MPD User Manual

Programming Example
//Electronic gearing. Master position is received via //communication
channel inputs.

//Master resolution: 2000 counts/rev

// On slave axis (Axis ID = 1):

GEAR = 0.3333; // gear ratio

GEARMASTER = 3; //gear ratio denominator

GEARSLAVE = 1; //gear ratio numerator

EXTREF 0; // master position got via communication channel

MASTERRES = 2000; // master resolution

REG_ON; //Enable superposition

MODE GS; //Set as slave, position mode

TUM1; //Set Target Update Mode 1

SRB UPGRADE, 0xFFFF, 0x0004; //UPGRADE.2 = 1

CACC = 0.9549; //Limit maximum acceleration at 3000[rad/s^2]

UPD; //execute immediate

// On master axis:

SLAVEID = 1;

SGM; //Enable Master in Electronic Gearing mode

SRB OSR, 0xFFFF, 0x8000; // OSR.15=1 -> Send Position Reference

[1]MPOS0 = TPOS;

UPD; //execute immediate

SETSYNC 20; //Send synchronization messages every 20[ms]

See also:

Electronic Gearing – MPL Programming Details

MPL Description

© ElectroCraft 2013 279 MPD User Manual

6.2.3.1.2. Electronic Camming - MPL Programming Details

In the electronic camming a drive/motor may operate as master or as slave.

When set as master, the drive/motor sends its position via a multi-axis communication channel, like the
CAN bus. When set as slave, the drive/motor executes a cam profile function of the master position. The
cam profile is defined by a cam table – a set of (X, Y) points, where X is cam table input i.e. the master
position and Y is the cam table output i.e. the corresponding slave position. Between the points the
drive/motor performs a linear interpolation.

Master operation

The master operation can be enabled with the MPL command SGM followed by an UPD (update) and
can be disabled by the MPL command RGM followed by an UPD. In both cases, these operations have
no effect on the motion executed by the master.

Once at each slow loop sampling time interval, the master sends either its load position APOS (if OSR.15
= 0) or its position reference TPOS (if OSR.15 = 1) to the axis or the group of axes specified in the MPL
parameter SLAVEID. The SLAVEID contains the axis ID of one slave or the value of a group ID+256 i.e.
the group of slaves to which the master should send its data.

Remark: The group ID is an 8-bit unsigned value. Each bit set to 1 represents a group: bit 0 – group 1, bit
1 – group 2, etc. In total there are 8 groups. For example, if the master sends its position to group 3, the
group ID = 4 (00000100b) and the SLAVEID is 4+256 = 260.

The master operation can be synchronized with that of the slaves. The synchronization process is
performed in two steps. First, the master sends a synchronization message to all axes, including to itself.
When this message is received, all the axes read their own internal time. Next, the master sends its
internal time to all the slaves, which compare it with their own internal time. If there are differences, the
slaves correct slightly their sampling periods in order to keep them synchronized with those of the master.
As effect, when synchronization procedure is active, the execution of the control loops on the slaves is
synchronized with those of the master within a 10μs time interval. Due to this powerful feature, drifts
between master and slave axes are eliminated. The synchronization procedure is activated with the MPL
command SETSYNC value where value represents the time interval in internal units between the
synchronization messages sent by the master. Recommended value is 20ms.

Slave operation

The slaves can get the master position in two ways:

1. Via a communication channel, from a drive/motor set as master

2. Via an external digital reference of type pulse & direction (if ACR.2=1) or quadrature encoder (if
ACR.2 = 0). Both options have dedicated inputs. The pulse & direction signals are usually
provided by an indexer and must be connected to the pulse & direction inputs of the drive/motor.
The quadrature encoder signals are usually provided by an encoder on the master and must be
connected to the 2nd encoder inputs.

You can activate the first option with the MPL command: EXTREF 0 and the second option with the MPL
command EXTREF 2. Both become effective at the next UPD command.

The MPL parameter MASTERRES provides the master resolution which is needed to compute correctly
the master position and speed (i.e. the position increment). MASTERRES is a 32-bit long integer value,
expressed in the master position units. If master position is not cyclic (i.e. the resolution is equal with the
whole 32-bit range of position), set master resolution to 0x80000001.

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the master

© ElectroCraft 2013 280 MPD User Manual

position is set by default to 0. It may be changed to a different value by writing the desired value in the
MPL variable APOS2.

Through the MPL parameter CAMOFF you can shift the cam profile versus the master position, by setting
an offset for each slave. The cam table input is computed as the master position minus the cam offset.
For example, if a cam table is defined between angles 100 to 250 degrees, a cam offset of 50 degrees
will make the cam table to execute between master angles 150 and 300 degrees.

In slave mode the drive/motor performs a position control. Based on the master position X, it calculates
the cam table output Y = f(X). It is not mandatory to define the cam table for 360 degrees of the master.
You may also define shorter cam tables, with a start angle Xmin > 0 and an end angle Xmax < 360
degrees. In this case, the cam table output remains unchanged outside the active area of the cam, being
computed as follows:

• Y = Ymin = f(Xmin), if 0 < X < Xmin

• Y = f(X), if Xmin ≤ X ≤ Xmax

• Y = Ymax = f(Xmax), if Xmax < X < 360

The electronic camming can be: relative (if ACR.12 = 0) or absolute (if ACR.12 = 1).

In the relative mode, the output of the cam table is added to the slave actual position. At each slow loop
sampling period the slave computes a position increment dY = Y – Yold. This is the difference between
the actual cam table output Y and the previous one Yold. The position increment dY is added to the old
target position to get a new target position: TPOS = TPOS + dY. The slave detects when the master
position rolls over, from 360 degrees to 0 or vice-versa and automatically compensates in dY the
difference between Ymax and Ymin. Therefore, in relative mode, you can continuously run the master in
one direction and the slaves will execute the cam profile once at each 360 degrees with a glitch free
transition when the cam profile is restarted.

When electronic camming is activated in relative mode, the slave initializes Yold with the first cam output
computed: Yold = Y = f(X). The slave will keep its position until the master starts to move and then it will
execute the remaining part of the cam. For example if the master moves from X to Xmax, the slave
moves with Ymax – Y.

In the absolute mode, the output of the cam table Y is the target position to reach: TPOS = Y.

Remark: The absolute mode must be used with great care because it may generate abrupt variations on
the slave target position if:

• Slave position is different from Y at entry in the camming model

• Master rolls over and Ymax ≠ Ymin

In the absolute mode, you can introduce a maximum speed limit to protect against accidental sudden
changes of the positions to reach. The feature is activated by setting UPGRADE.2=1 and the maximum
speed value in CSPD.

Remark: When the slave can’t reach the target position corresponding to the cam profile due to the
speed limitation, SRH.14 = 1. The same bit is reset to zero when the slave returns to normal operation
following the cam profile with a speed below the maximum limit. The bit has no significance in other
motion modes.

One way to avoid abrupt variations at activation of absolute mode is to move the slave(s) in the position
corresponding to the master actual value, before enabling the camming slave mode. This approach
requires finding the cam table output before entering in the camming mode. You can get this information
in the following way:

© ElectroCraft 2013 281 MPD User Manual

1. Set the slave(s) in trapezoidal position profile mode, for example to keep its actual position

2. Set MPL parameter GEAR (also used as gear ratio in electronic gearing) at 0.

3. Introduce an wait of 1ms (more exactly one slow-loop sampling period)

4. Read the cam table output for the actual master position from MPL variable EREF

Remark: Before executing point 2, make sure that the cam table is present in the RAM memory and
CAMSTART is initialized accordingly (see below for details).

The cam tables are arrays of X, Y points, where X is the cam input i.e. the master position and Y is the
cam output i.e. the slave position. The X points are expressed in the master internal position units, while
the Y points are expressed in the slave internal position units. Both X and Y points 32-bit long integer
values. The X points must be positive (including 0) and equally spaced at: 1, 2, 4, 8, 16, 32, 64 or 128 i.e.
having the interpolation step a power of 2 between 0 and 7. The maximum number of points for one cam
table is 8192.

As cam table X points are equally spaced, they are completely defined by two data: the Master start
value or the first X point and the Interpolation step providing the distance between the X points. This
offers the possibility to minimize the cam size, which is saved in the drive/motor in the following format:

• 1st word (1 word = 16-bit data):

� Bits 15-13 – the power of 2 of the interpolation step. For example, if these bits have the
binary value 010 (2), the interpolation step is

2

The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

 = 4, hence the master X values are spaced
from 4 to 4: 0, 4, 8, 12, etc.

� Bits 12-0 – the length -1 of the table. The length represents the number of points

• 2nd and 3rd words: the Master start value (long), expressed in master position units. 2nd
word contains the low part, 3rd word the high part

• 4th and 5th words: Reserved. Must be set to 0

• Next pairs of 2 words: the slave Y positions (long), expressed in position units. The 1st word
from the pair contains the low part and the 2nd word from the pair the high part

• Last word: the cam table checksum, representing the sum modulo 65536 of all the cam table
data except the checksum word itself

© ElectroCraft 2013 282 MPD User Manual

Before enabling electronic camming slave mode, the cam table must be downloaded into the drive/motor
RAM memory and the MPL variable CAMSTART must be set with the value of the cam start address. It is
possible to download more than one cam table in the drive/motor RAM memory and through CAMSTART
to select which one to use at one moment.

Typically, the cam tables are first downloaded into the EEPROM memory of the drive, together with the
rest of the MPL program. Then using the MPL command (included in the MPL program):

INITCAM LoadAddress, RunAddress

the cam tables are copied from the EEPROM memory into the drive/motor RAM memory. The
LoadAddress is the EEPROM memory address where the cam table was loaded and RunAddress is
the RAM memory address where to copy the cam table. After the execution of this command the MPL
variable CAMSTART takes the value of the RunAddress.

Remarks:

• Motion programming tool MotionPRO Developer automatically computes the start addresses in
RAM and EEPROM of the selected cam tables and for each cam generates an INITCAM
command. The INITCAM commands are included in the MPL application before ENDINIT.
Therefore when this command is executed, all the selected cams are already copied from the
EEPROM into the RAM.

• During electronic camming slave mode, only one cam table can be active at time

You can compress/extend the cam table input. Specify through MPL parameter CAMX, an input
correction factor by which the cam table input is multiplied. For example, an input correction factor of 2,
combined with a cam offset of 180 degrees, will make possible to execute a cam table defined for 360
degrees of the master in the last 180 degrees.

You can also compress/extend the cam table output. Specify through the MPL parameter CAMY, an
output correction factor by which the cam table output is multiplied. This feature addresses the
applications where the slaves must execute different position commands at each master cycle, all having
the same profile defined through a cam table. In this case, the drive/motor is programmed with a unique
normalized cam profile and the cam table output is multiplied with the relative position command updated
at each master cycle.

See also:

Electronic Camming – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 283 MPD User Manual

6.2.3.1.3. Electronic Camming - Related MPL Instructions and Data

Parameters

CSPD Maximum speed in slave mode when UPGRADE.2=1

CAMOFF Cam offset. The input in the cam table before applying the scaling MPOS0 is
computed by subtracting cam offset from the master position. Measured in
master position units

CAMSTART Pointer to cam table start address in RAM memory. When several cam tables are
loaded in RAM, CAMSTART indicates which one is used. You can switch
between cam tables by setting CAMSTART to the start address of another cam
table. CAMSTART is automatically set by the INITCAM command, which copies
the cam table from the EEPROM to the RAM memory

CAMX Cam input correction factor. Cam input X (MPL variable CAMINPUT) is:

X = CAMINPUT = MPOS0 * CAMX

where MPOS0 = MREF - CAMOFF

CAMY Cam output correction factor. Cam table output Y is:

Y = f(X) * CAMY

MASTERRES Master resolution used by slave(s) (long) Measured in master position units.

SLAVEID The axis or group ID to which the master sends its position. When group ID is used, the
SLAVEID is set with group ID value + 256.

OSR MPL register. When OSR.15=1, the master sends the position reference.
When OSR.15=0, the master sends the actual load position

UPGRADE MPL register. When UPGRADE.2=1, a speed limitation may be set on slave. When
UPGRADE.2=0, the speed limitation is disabled

ACR Auxiliary Control Register – includes several MPL Programming options. When ACR.12 =
0, the camming is relative. When ACR.12 = 1, the camming is absolute. When ACR.2 = 0, the external
reference is quadrature encoder. When ACR.2 = 1, the external reference is pulse & direction

Variables

MREF Master position received or computed by the slave(s). Measured in master position
units

MSPD Master speed computed by the slaves. Measured in master speed units

MPOS0 Master position on the slave(s) after subtracting cam offset CAMOFF. Measured in
master position units

CAMINPUT Cam table input

APOS2 Master position computed by the slaves from pulse & direction or quadrature encoder
inputs. At power-on it is set to 0. May be set to a different value, before starting the
master. Measured in master position units

TPOS Target position – position reference computed by the reference generator at each slow
loop sampling period. Measured in position units

© ElectroCraft 2013 284 MPD User Manual

TSPD Target speed – speed reference computed by the reference generator at each slow loop
sampling period. Measured in speed units

TACC Target acceleration – acceleration/deceleration reference computed by the reference
generator at each slow loop sampling period. Measured in acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

Instructions

EXTREF 0 Get master position via a communication channel

EXTREF 2 Compute master position from pulse & direction or quadrature encoder signals

MODE CS Set electronic camming slave mode

SGM Set electronic gearing/camming master mode

RGM Reset electronic gearing/camming master mode

SETSYNC value Send synchronization messages at the time interval indicated by the 16-bit value.
Measured in time units

INITCAM LoadAddress, RunAddress Copy a cam table from EEPROM starting with LoadAddress to
RAM starting with RunAddress. Both values are unsigned integers

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from the actual values
of position and speed reference (i.e. don’t update the reference values with load/motor position and
speed)

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from the actual values
of load/motor position and speed (i.e. updates the reference values with load/motor position and speed)

UPD Update motion parameters and start new motion mode

STOP Stop the motion

SRB Set/reset bits from a MPL data

Remarks:

• CSPD must be positive

• In order to activate the TUM1 mode, execute the MPL instruction TUM1 AFTER the MODE CS
command and BEFORE the UPD command. When MODE CS is executed, it automatically sets
TUM0 mode. However, as the new motion mode becomes effective only after the UPD
command, a TUM1 command will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In open loop
control of steppers, TUM0 is ignored as there is no position and/or speed feedback

• In setup configurations where there is no transmission ratio between the motor and the load, it is
supposed that these are directly connected. In these cases: APOS_MT=APOS_LD and
ASPD_MT=ASPD_LD

© ElectroCraft 2013 285 MPD User Manual

Programming Example
// Electronic camming slave. Master position is read from 2nd

// encoder inputs. Master resolution : 2000 counts/rev

CAMSTART = 0xF000; //Initialize CAM table start address

EXTREF 2; // master position read from P&D or 2nd encoder

CAMOFF = 200; //Cam offset from master

CAMX = 0.5; //Cam input correction factor

CAMY = 1.5; //Cam output correction factor

MASTERRES = 2000; // master resolution

MODE CS; //Set electronic camming slave mode

TUM1; //Set Target Update Mode 1

SRB ACR, 0xEFFF, 0x0000; //Camming mode: Relative

UPD; //execute immediate

See also:

Electronic Camming – MPL Programming Details

MPL Description

6.2.3.1.4. Homing and Function Calls

ElectroCraft Motion Controller is able to start the execution of homing routines and MPL functions stored
in the slaves’ non-volatile memory. A maximum of 10 homing/functions can be called access from Motion
Controller

Once the homing/function execution starts the Motion Controller application can be halted by using an
event on function complete. The Motion complete resumes the application execution when the event
occurs or it time outs.

See also:

MPL Description

© ElectroCraft 2013 286 MPD User Manual

6.2.3.1.5. Homing - MPL Programming Details

The homing is a sequence of motions, usually executed after power-on, through which the load is
positioned into a well-defined point – the home position. Typically, the home position is the starting point
for normal operation.

The search for the home position can be done in numerous ways. In order to offer maximum flexibility,
the MPL does not impose the homing procedures but lets you define your own, according with your
application needs.

Basically a homing procedure is a MPL function and by calling it you start executing the homing
procedure. The call must be done using the MPL command CALLS – a cancelable call. This command
offers the possibility to abort at any moment the homing sequence execution (with MPL command
ABORT) and return to the point where the call was initiated. Therefore, if the homing procedure can’t find
the home position, you have the option to cancel it.

During the execution of a homing procedure SRL.8 = 1. Hence you can find when a homing sequence
ends, either by monitoring bit 8 from SRL or by programming the drive/motor to send a message to your
host when SRL.8 changes. As long as a homing sequence is in execution, you should not start another
one. If this happens, the last homing is aborted and a warning is generated by setting SRL.7 = 1.

Remark: In motion programming tools like MotionPRO Developer, ElectroCraft provides for each
programmable drive/motor a collection of up to 32 homing procedures. These are predefined MPL
functions, which you may call after setting the homing parameters. You may use any of these homing
procedures as they are, or use them as a starting point for your own homing routines.

Typically a homing function requires setting the following parameters before calling it:

• CACC – acceleration/deceleration rate for the position / speed profiles during homing

• CDEC – deceleration rate for quick stop when a limit switch is reached

• CSPD – High/normal speed for the position / speed profiles done during homing

• HOMESPD – Low speed for the final approach towards the home position

• HOMEPOS – New home position set at the end of the homing procedure

See also:

Homing – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 287 MPD User Manual

6.2.3.1.6. Homing - Related MPL Instructions and Data

Parameters

CACC Acceleration/deceleration command for the position / speed profiles during homing.
Measured in acceleration units

CDEC Deceleration rate during quick stop. Measured in acceleration units

CSPD High/normal speed command for the position / speed profiles during homing. Measured in
speed units

HOMEPOS New home position set at the end of the homing procedure. Measured in position units

HOMESPD Low speed command for the final approach towards the home position. Measured in
speed units

Instructions

CALLS Cancelable call of a MPL function

ABORT Abort execution of a function called with CALLS

SAP V32 Set actual position equal with the value or a 32-bit long variable V32. The
value is measured in position units

Programming Example
// Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

//Select homing parameters

CACC = 0.3183;//Acceleration rate = 1000[rad/s^2]

CDEC = 0.3183;//Deceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//High speed = 1000[rpm]

HOMESPD = 3;//Low speed = 90[rpm]

HOMEPOS = 0;//Home position = 0[rot]

//Execute homing mode 1

CALLS HomeMode1; // call HomeMode1 function

WaitHomingEnd:

user_var = SRL;

SRB user_var, 0x100, 0; // isolate SRL.8

GOTO WaitHomingEnd, user_var, NEQ; // wait as long as SRL.8=1

HomingEnded:

...

© ElectroCraft 2013 288 MPD User Manual

HomeMode1: // this function implements the homing procedure

...

SAP HOMEPOS; // Set home position = HOMEPOS value

RET;

See also:

Homing – MPL Programming Details

MPL Description

© ElectroCraft 2013 289 MPD User Manual

6.2.3.1.7. Contouring

In the contouring mode, you can program an arbitrary path via a series of points. Between the points,
linear interpolation is performed, leading to a contour described by a succession of linear segments. The
contouring mode may be executed only from a MPL program. You can’t send contouring points from a
host via a communication channel, like in the case of the PT mode. Depending on the control mode
chosen, four options are available:

• Position contouring – the load/motor is controlled in position. The path represents a position
reference

• Speed contouring – the load/motor is controlled in speed. The path represents a speed
reference.

• Torque contouring – the motor is controlled in torque. The path represents a current reference.

• Voltage contouring – the motor is controlled in voltage. The path represents a voltage reference.

A contouring segment is described via the MPL command SEG, which has 2 parameters: time and
reference increment. The time represents the segment duration expressed in time units i.e. in number
of slow loop sampling periods. The reference increment represents the amount of reference variation per
time unit i.e. per slow loop sampling period.

The contouring mode has been foreseen mainly for setup tests. However, you can also use the position
contouring and the speed contouring for normal operation, as part of your motion application. You can
switch at any moment to and from these 2 modes. The torque contouring and the voltage contouring have
been foreseen only for setup tests. The torque contouring may be used, for example, to check the
response of the current controllers to different input signals. Similarly, the voltage contouring may be
used, for example, to check the motors behavior under a constant voltage or any other voltage shape.

0

4

8

12

16

20

24

0 2 4 6 8 10 12 14

Reference generation in contouring modes

In position contouring or speed contouring, the starting point is either the current value of the target
position/speed (if TUM1 command is set between the motion mode setting and the UPD command), or
the actual value of the load position/speed (if TUM1 is omitted). Therefore the contour is relative to the
starting point.

In torque/voltage contouring, the starting point may be set by the user in REF0(H). After reset, the default
value of REF0(H) is zero.

In the MPL program, first the contouring mode must be set, followed by the first point. Then the
contouring mode can be activated with the UPD command, followed by the next points. The sequence of
points must end with a final point having the time interval 0.

© ElectroCraft 2013 290 MPD User Manual

Remarks:

• When the last segment execution ends, the reference is kept constant at the last computed
value.

• When a contouring sequence ends without having time value set to 0 on the last segment, the
drive/motor remains in contouring mode waiting for new points. When the last segment has time
value set to 0, the drive gets out from contouring mode. In order to execute other segments, the
contouring mode must be set again.

When a sequence of contour points is executed, the MPL instruction pointer IP advances as the
segments described by the points are executed. When the reference generator starts working with a new
segment, at MPL program level the IP advances to the execution of the SEG instruction. The execution of
a MPL instruction for a contour segment means to copy the segment data into a local buffer and then wait
(i.e. loop on the same instruction) until the previous segment, currently under execution at reference
generator level will end. This procedure permits to immediately start the execution of the next contour
segment when the current one ends because the next segment data are already available in a local
buffer. Each time the reference generator starts to execute a new segment, the IP advances to the next
contour segment and its data are transferred into the local buffer.

See also:

Contouring – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 291 MPD User Manual

6.2.3.1.8. Contouring - MPL Instructions and Data

Parameters

REF0(H) Starting value for torque or voltage contouring. Measured in current units or voltage
command units

Variables

TPOS Target load position – position reference computed by the reference generator at

each slow loop sampling period in position or speed contouring. In speed contouring,
TPOS is computed by integrating the target speed TSPD.Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at

each slow loop sampling period in position or speed contouring. Measured in speed
units

TACC Target load acceleration – acceleration/deceleration reference computed by the

 reference generator at each slow loop sampling period in position and speed contouring.
Measured in

acceleration units

IQREF Current reference – computed by the reference generator at each slow loop sampling
period in torque contouring. Measured in current units

UQREF Voltage reference – computed by the reference generator at each slow loop sampling
period in voltage contouring. Measured in voltage command units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS.

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

IQ Motor current. Measured in current units

Instructions

MODE PC Set position contouring mode

MODE SC Set speed contouring mode

MODE TC Set torque contouring mode

MODE VC Set voltage contouring.

SEG Time, Increment Set a contour segment where:

Time – is the segment time. It is an unsigned integer measured in time units

Increment – is the segment reference increment per time unit. It is 32-bit fixed value measured
in:

© ElectroCraft 2013 292 MPD User Manual

� speed units for position contouring

� acceleration units for speed contouring

� current units / time units for torque contouring

� voltage units / time units for voltage contouring

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from the actual values
of position and speed reference (i.e. don’t update the reference values with load/motor position and
speed)

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from the actual values
of load/motor position and speed (i.e. updates the reference values with

load/motor position and speed)

UPD Update motion parameters and start new motion mode

STOP Stop the motion.

Remarks:

• In order to activate the TUM1 mode, execute the MPL instruction TUM1 AFTER setting one of the
contouring modes and BEFORE the UPD command. When the MPL command setting a
contouring mode is executed, it automatically sets TUM0 mode. However, as the new motion
mode becomes effective only after the UPD command, a TUM1 command will overwrite the
TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In open loop
control of steppers, TUM0 is ignored as there is no position and/or speed feedback

• In setup configurations where there is no transmission ratio between the motor and the load, it is
supposed that these are directly connected. In these cases: APOS_MT=APOS_LD and
ASPD_MT=ASPD_LD

Programming Example

// Position contouring with position feedback on motor: 500 lines

// incremental encoder (2000 counts/rev)

MODE PC;//Set Position Contouring

TUM1;//Start from actual value of position reference

SEG 100U, 20.00000;// 1st point

UPD; //Execute immediate

SEG 100U, 0.00000; // 2nd point

SEG 0, 0.0; //End of contouring

See also:

Contouring – MPL Programming Details

MPL Description

© ElectroCraft 2013 293 MPD User Manual

6.2.3.1.9. Test Mode - MPL Programming Details

The torque and voltage test modes have been designed to facilitate the testing during the setup phase. In
these test modes, either a voltage or a torque (current) command can be set using a test reference
consisting of a limited ramp (see figure below).

Reference profile in test modes

For AC motors (like for example the brushless motors), the test mode offers also the possibility to rotate a
voltage or current reference vector with a programmable speed. As a result, these motors can be moved
in an “open-loop” mode without using the position sensor. The main advantage of this test mode is the
possibility to conduct in a safe way a series of tests, which can offer important information about the
motor parameters, drive status and the integrity of the its connections.

Electrical angle setup in test modes with brushless AC motors

Remark: The Motion test is a special test mode to be used only in some special cases for drives setup.
The Motion Test mode is not supposed to be used during normal operation

See also:

Test Mode – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 294 MPD User Manual

6.2.3.1.10. Test Mode - MPL Instructions and Data

Parameters

REFTST_V Maximum voltage reference. Measured in voltage units

REFTST_A Maximum current reference. Measured in current units

RINCTST_V Voltage reference increment at each slow-loop sampling period. Measured in voltage
units / time units

RINCTST_A Current reference increment at each slow-loop sampling period. Measured in current
units / time units

THTST Initial value for the electrical angle. Measured in electrical angle units

TINCTST Electrical angle increment at each fast-loop sampling period. Measured in electrical
angle increments units.

Instructions

MODE VT Set voltage test mode

MODE TT Set torque test mode

UPD Update motion mode and parameters. Start motion

Programming Example
//Torque test mode, brushless AC motor. Drive IDM640-8EI

//with peak current 16.5A -> 32736 internal current units

//360° electric angle -> 65536 internal units

// fast loop sampling period = 0.1ms. Motor has 2 pole pairs

MODE TT; //Torque Test Mode

REFTST_A = 1984;//Reference saturation = 1[A]

RINCTST_A = 20;//Reference increment = 10[A/s]

THTST = 0;//Electric angle = 0[deg]

TINCTST = 7;//Electric angle increment ~= 2e+002[deg/s]

UPD; //update immediate

See also:

Test Mode – MPL Programming Details

MPL Description

© ElectroCraft 2013 295 MPD User Manual

6.2.3.1.11. Motor Commands

You can apply one of following commands to the motor:

• Activate/deactivate the control loops and the power stage PWM output commands (AXISON /
AXISOFF)

• Stop the motor with deceleration set in MPL parameter CACC

• Issue an update command, immediate (UPD) or when a previously programmed event occurs
(UPD!)

• Change the value of the motor position and position reference

The AXISON command activates the control loops and the PWM output commands. After power on, the
AXISON command has to be executed after the ENDINIT (end of initialization) command.

Remark: You may set the first motion mode either before or after the AXISON command. If the first
AXISON is executed before setting the motion mode, the drive/motor enters in the default motion mode:
voltage external online with voltage reference zero. Therefore, the drive gets zero voltage commands,
until you’ll set a new motion mode. If you first set a motion mode, followed by update UPD and then
activate control with AXISON, the drive/motor enters directly in the desired motion mode.

The AXISON command may be used to restore the normal drive operation following an AXISOFF
command. Typically, this situation occurs at recovery from an error, following the fault reset command
FAULTR, or after the drive/motor ENABLE input goes from status disabled to status enabled.

When AXISON is set after an AXISOFF command, the reference generator resumes its calculations from
the same conditions left when the AXISOFF command was executed. As consequence, the values of the
target position and speed provided by the reference generator may differ quite a lot from the actual
values of the load position and speed which continue to be measured during the AXISOFF condition. In
order to eliminate these differences:

• Set the motion mode, even if it is the same. The motion mode commands, automatically set the
target update mode zero (TUM0), which updates the target position and speed with the actual
measured values of the load position and speed

• Execute update command UPD

• Execute AXISON command

Example: A motor controlled in speed with a trapezoidal profile, was stopped with an AXISOFF
command. In order to resume the normal operation, with the same parameters, the MPL program can be:

// Resume speed profile operation from AXISOFF

MODE SP; // set speed profile mode

UPD; // update immediate

AXISON; // motion starts.

//The initial value for target speed is 0 because was

//updated with the actual motor speed which is 0

//because the motor is still

The AXISOFF command deactivates the control loops, the reference generator and the PWM output
commands (all the switching devices are off). However, all the measurements remain active and
therefore the motor currents, speed, position as well as the supply voltage continue to be updated and
monitored. If the AXISOFF command is applied during motion, it leaves the motor free running. Typically,

© ElectroCraft 2013 296 MPD User Manual

the AXISOFF command is used when a fault condition is detected, for example when a protection is
triggered.

Fault conditions trigger MPL interrupts. Each drive/motor has a built-in set of MPL interrupt service
routines (ISR), which are automatically activated after power-on. In these routines, the default action for
fault conditions is an AXISOFF command. If needed, you may replace any built-in ISR with your own ISR
and thus, adapt the fault treatment to your needs.

Remark: The AXISOFF command is automatically generated when the Enable input goes from enabled
to disabled status. If the Enable input returns to the enabled status, the AXISON command is
automatically generated if

• ACR.3 =1, or

• ACR.1 = 1 i.e. the drive/motor is set to start automatically after power-on with an external

Remark: SRL.15 shows the AXISON/AXISOFF condition and SRH.15 shows a fault condition

The STOP command stops the motor with the deceleration rate set in MPL parameter CACC. The
drive/motor decelerates following a trapezoidal position or speed profile. If the STOP command is issued
during the execution of an S-curve profile, the deceleration profile may be chosen between a trapezoidal
or an S-curve profile (see S-curve dialogue settings). You can detect when the motor has stopped by
setting a motion complete event (!MC)and waiting until the event occurs (WAIT!). The STOP command
can be used only when the drive/motor is controlled in position or speed.

Remarks:

• In order to restart after a STOP command, you need to set again the motion mode. This operation
disables the stop mode and allows the motor to move

• When STOP command is sent via a communication channel, it will automatically stop any MPL
program execution, to avoid overwriting the STOP command from the MPL program

If an error requiring the immediate stop of the motion occurs (like triggering a limit switch or following a
command error), the drive/motor enters automatically in the quick stop mode. This mode stops the
motor with a trapezoidal profile, using the deceleration rate set in the MPL parameter CDEC.

When an immediate update command UPD is executed, the last motion mode programmed together with
the latest motion parameters are taken into consideration. During motion execution, you can freely
change the motion mode and/or its parameters. These changes will have no effect until an update
command is executed.

If you intend to perform an update when a specific condition occurs, you can set an event which monitors
the condition, followed by an update on event command UPD!. When the monitored condition occurs, the
update will be automatically performed. Once you have set an update on event UPD!, you can either wait
for the monitored event to occur, or perform other operations.

The MPL command SAP offers you the possibility to set / change the referential for position
measurement by changing simultaneously the load position APOS and the target position TPOS values,
while keeping the same position error.

© ElectroCraft 2013 297 MPD User Manual

You can specify the new position either as an immediate value or via a 32-bit long variable. SAP
command can be executed at any moment during motion. When SAP command is executed, the
following operations are performed:

• Under TUM1, i.e. if TUM1 command has been executed after the last motion mode setting and
before the last UPD, the target/reference position TPOS is set equal with the new position value
and the actual motor position APOS is set equal with the new position reference minus the
position error (POSERR)

TPOS = new_value;

APOS = TPOS – POSERR;

• Under TUM0, i.e. if TUM1 command has not been executed after the last motion mode setting
and before the last UPD, the actual load position APOS is set equal with the new position value
and the target/reference position TPOS is set equal with the new position plus the position error
(POSERR)

APOS = new_value;

TPOS = APOS + POSERR;

The MPL command STA sets the target position equal with the actual position: TPOS = APOS.

See also:

Motor Commands – Related MPL Instructions and Data

MPL Description

6.2.3.1.12. Motor Commands - Related MPL Instructions and Data

Parameters

CACC Deceleration rate following a STOP command

CDEC Deceleration rate during quick stop

MPL Variables

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

TPOS Target position – position reference computed by the reference generator at each slow
loop sampling period. Measured in position units

POSERR Represents the value of load position error, computed as the difference between the
target position and the measured position of the load

Instructions

AXISON Set axis ON. Activate control loops and PWM commands

AXISOFF Set axis OFF. Deactivate control loops and PWM commands

STOP Stop motion with the acceleration/deceleration set in CACC

© ElectroCraft 2013 298 MPD User Manual

UPD Update immediate motion mode and parameters. Start motion

UPD! Update the motion mode and parameters when the programmed
event occurs

SAP V32 Set V32 in the actual or target position. V32 is either a 32-bit immediate
value or a long MPL data (user variable) containing the value to set

STA Set target position TPOS equal with the actual position APOS

Programming Example
// Position profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//slew speed = 1000[rpm]

CPOS = 6000;//position command = 3[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

...

STOP; // stop motion before reaching the final position

//Define event: When actual position remains inside

//a settle band around the position to reach

SRB UPGRADE, 0xFFFF, 0x0800;

!MC;

WAIT!;//Wait until the event occurs i.e. motor stops

SAP 0; // Set actual position value to 0[rot]

...

MODE PP;

UPD; //execute immediate – restart motion after a STOP command

See also:

Motor Commands – MPL Programming Details

MPL Description

© ElectroCraft 2013 299 MPD User Manual

6.2.3.2. Program flow control

6.2.3.2.1. Events on drives with built-in Motion Controller

6.2.3.2.1.1. List of Events

An event is a programmable condition, which once set, is monitored for occurrence. You can do the
following actions in relation with an event:

A) Change the motion mode and/or the motion parameters, when the event occurs

B) Stop the motion when the event occurs

C) Wait for the programmed event to occur

Remark: The programmed event is automatically erased if the event is reached, if the timeout for the wait
is reached or if a new event is programmed.

Only a single event can be programmed at a time. The Table below presents all the events with their
mnemonic and a short description.

© ElectroCraft 2013 300 MPD User Manual

If you want to change the motion mode and/or the motion parameters when an event occurs, you must do
the following:

• Program/define one of the above events

• Set the new motion mode and/or the motion parameters

© ElectroCraft 2013 301 MPD User Manual

• Set one of the MPL commands: UPD! (Update on event) or STOP! (Stop on event), which will
become effective when the programmed event occurs

Remark: After you have programmed a new motion mode and/or new motion parameters with update on
event, you need to wait until the programmed event occurs, using the MPL command WAIT!. Otherwise,
the program will continue with the next instructions that may override the event monitoring.

The instruction WAIT!, stops the MPL program further execution, until the programmed event occurs.
During this period, only the MPL commands received via a communication channel are processed. You
may also specify the time limit for the wait, by adding a time value after the WAIT! command: WAIT!
time_limit. If the monitored event doesn’t occur in the time limit set, the wait loop is interrupted, the event
checking is reset and the MPL program passes to the next instruction.

See also:

Events – When the actual motion is completed. Related MPL Instructions and Data

Events – Function of motor or load position Related MPL Instructions and Data

Events – Function of motor or load speed Related MPL Instructions and Data

Events – After a wait time Related MPL Instructions and Data

Events – Function of reference Related MPL Instructions and Data

Events – Function of inputs status Related MPL Instructions and Data

Events – Function of 32-bit variable value Related MPL Instructions and Data

6.2.3.2.1.2. When the actual motion is completed

Setting this event allows you to detect when a motion is completed. You can use, for example, this event
to start your next move only after the actual move is finalized.

The motion complete condition is set in the following conditions:

• During position control:

� If UPGRADE.11=1, when the position reference arrives at the position to reach (commanded
position) and the position error remains inside a settle band for a preset stabilize time interval

� If UPGRADE.11=0, when the position reference arrives at the position to reach (commanded
position)

• During speed control, when the speed reference arrives at the commanded speed

The motion complete condition is reset when a new motion is started i.e. when the update command –
UPD is executed.

Remark: In case of steppers controlled open-loop, the motion complete condition for positioning is
always set when the position reference arrives at the position to reach independently of the
UPGRADE.11 status.

Parameters

POSOKLIM Specifies the settle band when UPGRADE.11=1. Measured in position units

TONPOSOK Specifies the stabilize time UPGRADE.11=1. Measured in time units

© ElectroCraft 2013 302 MPD User Manual

UPGRADE MPL register. When UPGRADE.11=1, the motion complete is set when
commanded/target position is reached and the position error is inside a settle band for a
preset stabilize time. When UPGRADE.11=0, the motion complete is set when
commanded/target position speed is reached

Instructions

!MC Set event when the actual position is completed

UPD! Update the motion mode and/or the motion parameters when the programmed event
occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the programmed
event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16, the wait
ends after the time interval specified in this 16-bit integer value. Value16 is measured in
time units

Programming Example 1

 //Execute successive position profiles

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; // set event and wait for motion complete

// start here next move

Programming Example 2

//Execute successive position profiles

// Position feedback: 500 lines encoder (2000 counts/rev)

// First move

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //start first move

© ElectroCraft 2013 303 MPD User Manual

// set motion complete parameters

POSOKLIM = 20; //Set settle band to 0.01[rot]

TONPOSOK = 10; //Set stabilize time to 10[ms]

SRB UPGRADE, 0xFFFF, 0x0800;

!MC; // set event when motion is complete

// Prepare data for second move

CPOS = 10000;//new position command = 5[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs. When the event

// occurs the second move will start

See also:

Events – Function of motor or load position. Related MPL Instructions and Data

Events – Function of motor or load speed. Related MPL Instructions and Data

Events – After a wait time. Related MPL Instructions and Data

Events – Function of reference. Related MPL Instructions and Data

Events – Function of inputs status. Related MPL Instructions and Data

Events – Function of 32-bit variable value. Related MPL Instructions and Data

Events – MPL Programming Details

© ElectroCraft 2013 304 MPD User Manual

6.2.3.2.1.3. Function of motor or load position

Setting any of these events allows you to detect when the load or motor absolute or the relative position
is equal or over/under a value or the value of a variable.

The absolute load or motor position is the measured position of the load or motor. The relative position is
the load displacement from the beginning of the actual movement. For example if a position profile was
started with the absolute load position 50 revolutions, when the absolute load position reaches 60
revolutions, the relative motor position is 10 revolutions.

Remark: The origin for the relative position measurement (MPL variable POS0) is set function of the
target update mode. Under TUM1, POS0 = TPOS. Under TUM0, POS0=APOS_LD.

Variables

POS0 Origin for the relative position measurement for the position events. Measured in
position units

RPOS Relative load position for the position events. It is computed with formula: RPOS
= APOS_LD – POS0. Measured in position units

TPOS Target position – position reference computed by the reference generator at
each slow loop sampling period. Measured in position units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

APOS_MT Actual motor position. Measured in motor position units.

Instructions

!AMPOvalue32 Set event when motor absolute position is equal or over value32. Value32 is a long
integer. Measured in motor position units

!AMPOvar32 Set event when motor absolute position is equal or over var32. Var32 is a long integer
MPL parameter or variable. Measured in motor position units

!ALPOvalue32 Set event when load absolute position is equal or over value32. Value32 is a long
integer. Measured in position units

!ALPOvar32 Set event when load absolute position is equal or over var32. Var32 is a long integer MPL
parameter or variable. Measured in position units

!AMPUvalue32 Set event when motor absolute position is equal or under value32. Value32 is a long
integer. Measured in motor position units

!AMPUvar32 Set event when motor absolute position is equal or under var32. Var32 is a long integer
MPL parameter or variable. Measured in motor position units

!ALPUvalue32 Set event when load absolute position is equal or under value32. Value32 is a
long integer. Measured in position units

!ALPUvar32 Set event when load absolute position is equal or under var32. Var32 is a long
integer MPL parameter or variable. Measured in position units

© ElectroCraft 2013 305 MPD User Manual

!RPOvalue32 Set event when load relative position is equal or over value32. Value32 is a long
integer. Measured in position units

!RPOvar32 Set event when load relative position is equal or over var32. Var32 is a long
integer MPL parameter or variable. Measured in position units

!RPUvalue32 Set event when load relative position is equal or under value32. Value32 is a
long integer. Measured in position units

!RPUvar32 Set event when load relative position is equal or under var32. Var32 is a long
integer MPL parameter or variable. Measured in position units

UPD! Update the motion mode and/or the motion parameters when the programmed
event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16,
the wait ends after the time interval specified in this 16-bit integer value. Value16
is measured in time units

Programming Example

//Stop motion when motor position > 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

!AMPO 6000; //Set event: when motor absolute position is >= 3 rev

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

See also:

Events – When the actual motion is completed. Related MPL Instructions and Data

Events – Function of motor or load speed Related MPL Instructions and Data

Events – After a wait time Related MPL Instructions and Data

Events – Function of reference Related MPL Instructions and Data

Events – Function of inputs status Related MPL Instructions and Data

Events – Function of 32-bit variable value Related MPL Instructions and Data

Events – MPL Programming Details

© ElectroCraft 2013 306 MPD User Manual

6.2.3.2.1.4. Function of motor or load speed

Setting any of these events allows you to detect when the load or motor speed is equal or over/under a
value or the value of a variable.

Variables

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

Instructions

!MSOvalue32 Set event when motor speed is equal or over value32. Value32 is a fixed value.
Measured in motor speed units

!MSOvar32 Set event when motor speed is equal or over var2. Var32 is a fixed MPL parameter or
variable. Measured in motor speed units

!LSOvalue32 Set event when load speed is equal or over value32. Value32 is a fixed value. Measured
in speed units

!LSOvar32 Set event when load speed is equal or over var2. Var32 is a fixed MPL parameter or
variable. Measured in speed units

!MSUvalue32 Set event when motor speed is equal or under value32. Value32 is a fixed value.
Measured in motor speed units

!MSUvar32 Set event when motor speed is equal or under var2. Var32 is a fixed MPL parameter or
variable. Measured in motor speed units

!LSUvalue32 Set event when load speed is equal or under value32. Value32 is a fixed value.
Measured in speed units

!LSUvar32 Set event when load speed is equal or under var2. Var32 is a fixed MPL parameter or
variable. Measured in speed units

UPD! Update the motion mode and/or the motion parameters when the programmed event
occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the programmed
event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16, the wait
ends after the time interval specified in this 16-bit integer value. Value16 is measured in
time units

© ElectroCraft 2013 307 MPD User Manual

Programming Example

//Motor is decelerating. Start a position profile when motor

//speed <= 600 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

!MSU 20; //Set event: when motor speed is <= 600 rpm

// prepare new motion mode

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

See also:

Events – When the actual motion is completed. Related MPL Instructions and Data

Events – Function of motor or load position Related MPL Instructions and Data

Events – After a wait time Related MPL Instructions and Data

Events – Function of reference Related MPL Instructions and Data

Events – Function of inputs status Related MPL Instructions and Data

Events – Function of 32-bit variable value Related MPL Instructions and Data

Events – MPL Programming Details

6.2.3.2.1.5. After a wait time

Setting this event allows you to introduce a delay in the execution of the MPL program.

The monitored event is: when relative time (MPL variable RTIME) is equal or over a value or the value of
a variable. The relative time RTIME is computed with formula:

RTIME = ATIME – TIME0,

where ATIME is a 32-bit absolute time counter, incremented by 1 at each slow loop sampling period and
TIME0 is the ATIME value when the wait event was set. After power on, TIME0 is set to 0. RTIME is
updated together with ATIME, at each slow loop sampling period.

Remark:

• ATIME and RTIME start ONLY after the execution of the ENDINIT (end of initialization)
command. Therefore you should not set wait events before executing this command

• After setting a wait time event, in order to effectively execute the time delay, you need to wait for
the event to occur, using WAIT!

© ElectroCraft 2013 308 MPD User Manual

Variables

ATIME Absolute time counter. Incremented at each slow loop sampling period. Starts
after execution of ENDINIT command. Measured in time units

RTIME Relative time. RTIME = ATIME – TIME0. Measured in time units

TIME0 Absolute time when last wait event was set. Measured in time units

Instructions

!RT value32 Introduce a time delay equal with value32. Value32 is a 32-bit long integer
number. Measured in time units

!RT var32 Introduce a time delay equal with value of var32. Var32 is a 32-bit long integer MPL
variable or parameter. Measured in time units

UPD! Update the motion mode and/or the motion parameters when the programmed event
occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the programmed event
occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16, the wait
ends after the time interval specified in this 16-bit integer value. Value16 is measured in time
units

Programming Example

 //Introduce a 100 ms delay

!RT 100; // set event: After a wait of 100 slow-loop periods

// 1 slow-loop period = 1ms

WAIT!; // wait the event to occur

See also:

Events – When the actual motion is completed. Related MPL Instructions and Data

Events – Function of motor or load position Related MPL Instructions and Data

Events – Function of motor or load speed Related MPL Instructions and Data

Events – Function of reference Related MPL Instructions and Data

Events – Function of inputs status Related MPL Instructions and Data

Events – Function of 32-bit variable value Related MPL Instructions and Data

Events – MPL Programming Details

© ElectroCraft 2013 309 MPD User Manual

6.2.3.2.1.6. Function of reference

Setting any of these events allows you to detect when the position or speed or torque reference is equal
or over/under a value or the value of a variable. Use:

• Position reference events, only when position control is performed

• Speed reference events, only when speed control is performed

• Torque reference events, only when torque control is performed

Remark: Setting an event based on the position or speed reference is particularly useful for open loop
operation where motor position and speed is not available

Variables

TPOS Target load position – position reference computed by the reference generator at each
slow loop sampling period, when position or speed control is performed. Measured in
position units

TSPD Target load speed – speed reference computed by the reference generator at each slow
loop sampling period, when position or speed control is performed. Measured in speed
units

IQREF Current reference – Measured in current units

TREF Target reference. It is a:

� Position reference, when position control is performed

� Speed reference, when speed control is performed

� Current/torque reference, when torque control is performed

� Voltage reference, when voltage control is performed

Function of the control mode, it is measured in position units or speed units or current units or
voltage command units

Instructions

!PROvalue32 Set event if position reference is equal or over value32. Value32 is a long integer value.
Measured in position units

!PROvar32 Set event if position reference is equal or over var32. Var32 is a long integer MPL
parameter or variable. Measured in position units

!PRUvalue32 Set event if position reference is equal or under value32. Value32 is a long integer value.
Measured in position units

!PRUvar32 Set event if position reference is equal or under var32. Var32 is a long integer MPL
parameter or variable. Measured in position units

!SROvalue32 Set event when speed reference is equal or over value32. Value32 is a fixed value.
Measured in speed units

!SROvar32 Set event when speed reference is equal or over var32. Var32 is a fixed MPL parameter
or variable. Measured in speed units

© ElectroCraft 2013 310 MPD User Manual

!SRUvalue32 Set event when speed reference is equal or under value32. Value32 is a fixed value.
Measured in speed units

!SRUvar32 Set event when torque reference is equal or under var32. Var32 is a fixed MPL
parameter or variable. Measured in speed units

!TROvalue32 Set event when torque reference is equal or over value32. Value32 is a fixed value.
Measured in current units

!TROvar32 Set event when speed reference is equal or over var32. Var32 is a fixed MPL parameter
or variable. Measured in current units

!TRUvalue32 Set event when torque reference is equal or under value32. Value32 is a fixed value.
Measured in current units

!TRUvar32 Set event when speed reference is equal or under var32. Var32 is a fixed MPL parameter
or variable. Measured in current units

UPD! Update the motion mode and/or the motion parameters when the programmed event
occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the programmed
event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16, the wait
ends after the time interval specified in this 16-bit integer value. Value16 is measured in
time units

Programming Example

// Motor will reach a hard stop. Disable control when torque

// reference > 1 A = 1984 internal current units

!TRO 1984.0; // set event when torque reference > 1 A

WAIT!;//Wait until the event occurs

AXISOFF; // disable control

See also:

Events – When the actual motion is completed. Related MPL Instructions and Data

Events – Function of motor or load position Related MPL Instructions and Data

Events – Function of motor or load speed Related MPL Instructions and Data

Events – After a wait time Related MPL Instructions and Data

Events – Function of inputs status Related MPL Instructions and Data

Events – Function of 32-bit variable value Related MPL Instructions and Data

Events – MPL Programming Details

© ElectroCraft 2013 311 MPD User Manual

6.2.3.2.1.7. Function of inputs status

Setting any of these events allows you to detect when:

• A transition occurs on one of the 2 capture inputs. On these inputs, are usually connected the 1st
and 2nd encoder index signals

• A transition occurs on one of the 2 limit switch inputs

• A general purpose digital input changes its status

Capture and limit switch inputs events

The capture inputs and the limit switch inputs can be programmed to sense either a low to high or high to
low transition. When the programmed transition occurs on either of these inputs, the following happens:

• Motor position APOS_MT is captured and memorized in the MPL variable CAPPOS, except the
case of open-loop systems, where reference position TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and memorized in the MPL
variable CAPPOS2, except the case of steppers controlled open loop with an encoder on the
load, when load position is captured in CAPPOS.

The selection between master and load position is done as follows: load position is saved in CAPPOS2
only for the setup configurations which use different sensors for load and motor and foresee a
transmission ratio between them. For all the other setup configurations, the master position is saved in
CAPPOS2. The master position is automatically computed when pulse and direction signals or
quadrature encoder signals are connected to their dedicated inputs. More details about the capture
process are presented at Special I/O – MPL Programming Details

Remarks:

• If both capture inputs are activated in the same time, the capture event is set by the capture input
that is triggered first. The capture event makes no difference between the two capture inputs.

• If the drive/motor accepts CANopen protocol, the home input is the same with the 2nd encoder
index. Therefore, the home input can be programmed like a capture input to sense transitions
and to memorize the load and master position when the transition occurs.

In order to set an event on a capture input, you need to:

1) Enable the capture input for the detection of a low->high or a high-> low transition, using one
of the MPL instructions: ENCAPI0, ENCAPI1, EN2CAPI0, EN2CAPI1

2) Set a capture event, with the MPL instruction: !CAP

3) Wait for the event to occur, with the MPL instruction: WAIT!

Remarks:

• When the programmed transition is detected, the capture input is automatically disabled. In order
to use it again, you need to enable it again for the desired transition

• You may also disable a capture input (i.e. its capability to detect a programmed transition)
previously enabled, using the MPL commands: DISCAPI, DIS2CAPI

In order to set an event on a limit switch input, you need to:

1) Enable the limit switch input for the detection of a low->high or a high-> low transition, using
one of the MPL instructions: ENLSP0, ENLSP1, ENLSN0, ENLSNI1

© ElectroCraft 2013 312 MPD User Manual

2) Set a limit switch event with one of the MPL instructions: !LSP, !LSN

3) Wait for the event to occur, with the MPL instruction: WAIT!

Remarks:

• When the programmed transition is detected, the limit switch input is automatically disabled (for
sensing transitions). In order to use it again, you need to enable it again for the desired transition

• You may also disable a limit switch input (i.e. its capability to detect a programmed transition)
previously enabled, using the MPL commands: DISLSP, DISLSN

Variables

CAPPOS Position captured when programmed transition occurs on 1st capture/encoder index
input. Measured in motor position units, except the case of stepper motors, when it is
measured in position units

CAPPOS2 Position captured when programmed transition occurs on 2nd capture/encoder index
input. Measured in position units when load position is captured, or in master position
units when master position is captured

APOS2 Master position computed by the slaves from pulse & direction or quadrature encoder
inputs. Measured in master position units

TPOS Target position – position reference computed by the reference generator at each slow
loop sampling period. Measured in position units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

APOS_MT Actual motor position. Measured in motor position units.

Instructions:

!CAP Set event on capture inputs

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low transition

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high transition

!LSN Set event on negative limit switch input

!LSP Set event on positive limit switch input

ENLSP0 Enable positive limit switch input to detect a high to low transition

ENLSN0 Enable negative limit switch input to detect a high to low transition

ENLSP1 Enable positive limit switch input to detect a low to high transition

ENLSN1 Enable negative limit switch input to detect a low to high transition

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

© ElectroCraft 2013 313 MPD User Manual

DISLSP Disable positive limit switch input to detect transitions

DISLSN Disable negative limit switch input to detect transitions

UPD! Update the motion mode and/or the motion parameters when the programmed
event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16, the wait
ends after the time interval specified in this 16-bit integer value. Value16 is measured in
time units

Programming Example

//Stop motion on next encoder index

ENCAPI1; //Set event: When the encoder index goes low->high

!CAP;

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

// now load/motor is in deceleration

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

General purpose digital inputs events

You can program an event on any general-purpose digital input. The event can be set when the input is
high (after a low to high transition) or low (after a high to low transition).

A general purpose input event is checked at each slow loop sampling period, when the status of the
selected input is compared with the one set in the event. A match triggers the event.

Instructions

!IN#n 1 Set event when the Input #n is high

!IN#n 0 Set event when input #n is low

UPD! Update the motion mode and/or the motion parameters when the programmed
event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

© ElectroCraft 2013 314 MPD User Manual

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16, the wait
ends after the time interval specified in this 16-bit integer value. Value16 is measured in
time units

Programming Example

// Start motion when digital input #36 is high

!IN#36 1; // set event when input #36 is high

//Position profile. Position feedback: 500-lines encoder

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

See also:

Events – When the actual motion is completed. Related MPL Instructions and Data

Events – Function of motor or load position Related MPL Instructions and Data

Events – Function of motor or load speed Related MPL Instructions and Data

Events – After a wait time Related MPL Instructions and Data

Events – Function of reference Related MPL Instructions and Data

Events – Function of 32-bit variable value Related MPL Instructions and Data

Events – MPL Programming Details

Special I/O – MPL Programming Details

© ElectroCraft 2013 315 MPD User Manual

6.2.3.2.1.8. Function of variable value

Setting any of these events allows you to detect when a selected variable is equal or over/under a value
or the value of a variable. The selected variable can be any 32-bit MPL variable, long or fixed.

Instructions

!VO var32, value32 Set event when 32-bit MPL parameter or variable var32 is equal or over value32.
Value32 is either a long or a fixed, depending on var32 type.

!VO var32, var32c Set event when 32-bit MPL parameter or variable var32 is equal or over var32c.
Var32c is a 32-bit MPL parameter of variable of the same type like var32.

!VU var32, value32 Set event when 32-bit MPL parameter or variable var32 is equal or under
value32. Value32 is either a long or a fixed, depending on var32 type.

!VU var32, var32c Set event when 32-bit MPL parameter or variable var32 is equal or under var32c.
Var32c is a 32-bit MPL parameter of variable of the same type like var32.

UPD! Update the motion mode and/or the motion parameters when the programmed
event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16,
the wait ends after the time interval specified in this 16-bit integer value. Value16
is measured in time units

Programming Example

//Wait until master position MREF > 500 counts, then activate

//electronic gearing slave mode

!VO MREF, 500; //Set event when variable MREF is <= 500

GEAR = 1; // gear ratio

GEARMASTER = 1; // Gear ratio denominator

GEARSLAVE = 1; // Gear ratio numerator

EXTREF 2; // read master from 2nd encoder or pulse & dir

MASTERRES = 2000; // master resolution

MODE GS; //Set as slave, position mode

TUM1; //Set Target Update Mode 1

SRB UPGRADE, 0xFFFF, 0x0004;//UPGRADE.2=1 enables CACC limitation

CACC = 0.3183; //Limit maximum acceleration at 1000[rad/s^2]

UPD!; //execute on event

See also:

Events – When the actual motion is completed. Related MPL Instructions and Data

Events – Function of motor or load position Related MPL Instructions and Data

Events – Function of motor or load speed Related MPL Instructions and Data

© ElectroCraft 2013 316 MPD User Manual

Events – After a wait time Related MPL Instructions and Data

Events – Function of reference Related MPL Instructions and Data

Events – Function of inputs status Related MPL Instructions and Data

Events – MPL Programming Details

6.2.3.2.2. Jumps and Function Calls

The MPL offers the possibility to make unconditional or conditional jumps and calls of functions.

The jumps are executed with MPL command GOTO, followed by a jump address. The jump address may
be specified with an immediate value, through a label or via 16-bit MPL variable containing it. A label can
be any user-defined string of up to 32 characters starting with an alphanumeric character or with
underscore. A label starts from the first column of a text line and ends with a colon (:). It contains the
MPL program address of the next MPL instruction. Using an assignment instruction of type: user_var =
label; you can set a jump address in an integer MPL variable.

In a conditional jump, a condition is tested. If the condition is true the jump is executed, else the next MPL
command is carried out. The condition is specified by a test variable and a test condition both added after
the jump address. The test variable is always compared with zero. The possible test conditions are: < 0,
<= 0, >0, >=0, =0, ≠ 0.

The calls are executed with MPL command CALL, followed by a MPL function address. A MPL function
is a set of MPL commands which starts with a label and ends with the RET instruction. The label gives
the MPL function address and name. Like the jump address, the MPL function address may be specified
with an immediate value, through a label or via 16-bit MPL variable containing it.

In a conditional call, a condition is tested. If the condition is true the MPL function is executed, else the
next MPL command is carried out. The condition is specified by a test variable and a test condition added
after the MPL function address. The test variable is always compared with zero. The possible test
conditions are: < 0, <= 0, >0, >=0, =0, ≠ 0.

Using MPL command CALLS, you can do a cancelable call. Use this command if the exit from the called
function depends on conditions that may not be reached. In this case, using MPL command ABORT you
can terminate the function execution and return to the next instruction after the call.

See also:

Jumps and Function Calls – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 317 MPD User Manual

6.2.3.2.3. Jumps and Function Calls - Related MPL Instructions and
Data

Instructions

GOTO label Unconditional jump to the address indicated by the label.

GOTO value16 Unconditional jump to the address set in value16. Value16 is a 16-bit unsigned
integer.

GOTO var16 Unconditional jump to the address indicated by var16. Var16 is a 16-bit MPL
variable whose value is the jump address

GOTO label, var, cond Conditional jump to the address indicated by the label. Var is a 16 or 32-bit MPL
variable compared with 0. Test condition is: EQ, NEQ, GT, GEQ, LT, LEQ

GOTO value16, var, cond Conditional jump to the address set in value16. Var is a 16 or 32-bit MPL
variable compared with 0. Test condition is: EQ, NEQ, GT, GEQ, LT, LEQ

GOTO var16, var, cond Conditional jump to the address indicated by var16. Var is a 16 or 32-bit
MPL variable compared with 0. Test condition is: EQ, NEQ, GT, GEQ, LT, LEQ

CALL label Unconditional call from the address indicated by the function starting
label (i.e. function name)

CALL value16 Unconditional call from the address set in value16. Value16 is a 16-bit unsigned
integer.

CALL var16 Unconditional call from the address indicated by var16. Var16 is a 16-bit MPL
variable whose value is the MPL function address

CALL label, var, cond Conditional call from the address indicated by the function starting label. Var is a
16 or 32-bit MPL variable compared with 0. Test condition is: EQ, NEQ, GT,
GEQ, LT, LEQ

CALL value16, var, cond Conditional call from the address set in value16. Var is a 16 or 32-bit MPL
variable compared with 0. Test condition is: EQ, NEQ, GT, GEQ, LT, LEQ

CALL var16, var, cond Conditional call from the address indicated by var16. Var is a 16 or 32-bit MPL
variable compared with 0. Test condition is: EQ, NEQ, GT, GEQ, LT, LEQ

CALLS label Cancelable call from the address indicated by the function starting label.

CALLS value16 Cancelable call from the address set in value16. Value16 is a 16-bit unsigned
integer.

CALLS var16 Cancelable call from the address indicated by var16. Var16 is a 16-bit MPL
variable whose value is the MPL function address

ABORT Abort the execution of a MPL function called with CALLS

RET Return from a MPL function

Remarks:

• All labels mentioned in the GOTO or CALL instructions must exist i.e. must be defined
somewhere in the MPL program.

• The label values are assigned after MPL program compilation

© ElectroCraft 2013 318 MPD User Manual

• When you call a MPL function, the return address pointed by the IP (instruction pointer) is saved
into the MPL stack. When RET is executed, the IP is set with the last value from the MPL stack,
hence the MPL program execution continues with the next instruction after the call. The MPL
stack dimension is 12 words. Each function call and MPL interrupt service routine call uses one
word of the MPL stack

• The body of the MPL subroutines must be placed outside the main MPL program, for example,
after the END instruction.

Programming Examples

GOTO label1, var1, LT; // jump to label1 if var1 < 0

GOTO label2, var1, LEQ; // jump to label2 if var1 <= 0

GOTO label3, var1, GT; // jump to label3 if var1 > 0

GOTO label4; // unconditional jump to label4

CALL fct1, var2, GEQ; // call function fct1, if var2 >= 0

CALL fct1, var2, EQ; // call function fct1, if var2 = 0

CALL fct1, var2, NEQ; // call function fct1, if var2 != 0

CALL fct1; // unconditional call of function fct1

CALLS fct2; // unconditional cancelable call of fct1

...

END; // end of main program

fct1:

...

...

RET;

fct2:

...

ABORT; // abort function, return to next MPL

// command after the CALLS

RET;

See also:

Jumps and Function Calls - MPL Programming Details

MPL Description

© ElectroCraft 2013 319 MPD User Manual

6.2.3.2.4. MPL Interrupts

In MPL, you can monitor simultaneously up to 13 conditions. Each condition triggers a MPL interrupt.
When a MPL interrupt occurs, the normal MPL program execution is suspended to execute a MPL
function associated with the interrupt, called the interrupt service routine (in short ISR). The MPL
interrupt mechanism is the following:

• The programmable drive continuously monitors 12 conditions that may generate MPL interrupts.
The motion controller has an additional condition that triggers the MPL interrupt Int12 when an
error on the slaves occurs

• When an interrupt condition occurs, a flag (bit) is set in the ISR (Interrupt Status Register)

• If the interrupt is enabled e.g. the same bit (as position) is set in the ICR (Interrupt Control
Register) and also if the interrupts are globally enabled (EINT instruction was executed), the
interrupt condition is qualified and it generates a MPL interrupt

• The interrupt causes a jump to the associated interrupt service routine. On entry in this routine,
the MPL interrupts are globally disabled (DINT) and the interrupt flag is reset

• The interrupt service routine must end with the MPL instruction RETI, which returns to normal
program execution and in the same time globally enables the MPL interrupts

The 13 monitored conditions are:

1. Int0 – Enable input has changed: either transition of the Enable input sets the interrupt flag

2. Int1 – Short-circuit: when the drive/motor hardware protection for short-circuit is triggered

3. Int2 – Software protections: when any of the following protections is triggered:

a. Over current

b. I2t motor

c. I2t drive

d. Over temperature motor

e. Over temperature drive

f. Over voltage

g. Under voltage

4. Int3 – Control error: when the control error protection is triggered

5. Int4 – Communication error: when a communication error occurs

6. Int5 – Wrap around: when the target position computed by the reference generator wraps around
because it bypasses the limit of the 32-bit long integer representation

7. Int6 – LSP programmed transition detected: when the programmed transition (low to high or
high to low) is detected on the limit switch input for positive direction (LSP)

8. Int7 – LSN programmed transition detected: when the programmed transition (low to high or
high to low) is detected on the limit switch input for negative direction (LSN)

9. Int8 – Capture input transition detected: when the programmed transition (low to high or high to
low) is detected on the 1st capture / encoder index input or on the 2nd capture / encoder index
input

© ElectroCraft 2013 320 MPD User Manual

10. Int9 – Motion is completed: in position control, when motion complete condition is set and in
speed control when target speed reaches zero.

11. Int10 – Time period has elapsed: periodic time interrupt with a programmable time period set in
the MPL parameter TMLINTPER

12. Int11 – Event set has occurred: when last defined event has been occurred

13. Int12 – Error on slave occurred: when a slave reports an error.

The interrupt service routines (ISR) of the MPL interrupts are similar with the MPL functions: the starting
point is a label and the ending point is the MPL instruction RETI (return from interrupt). When a MPL
interrupt occurs, the MPL instruction pointer (IP) jumps to the start address of the associated ISR. This
information is read from an interrupt table, which contains the values of the starting labels for all the ISR.
The beginning of the interrupt table is pointed by the MPL parameter INTTABLE. Like the MPL functions,
the interrupt table and the interrupt service routines must be positioned outside the main section of the
MPL program (see the programming example below).

At power-on, each drive/motor starts with a built-in interrupt table and a set of default ISR. The MPL
interrupts are globally enabled together with the first 4 interrupts: Int 0 to Int 3. For Int 2, all the
protections are activated, except over temperature motor, which depends on the presence or not of a
temperature sensor on the motor; hence this protection may or may not be activated. For each of these 4
interrupts there is a default ISR which is executed when the corresponding interrupt occurs.

Remark: A basic description of these defaults ISR is presented below. Their exact content is product
dependent and can be seen using MPL development platforms like MotionPRO Developer which include
the possibility to view and/or modify the contents of the default ISR for each type of drive/motor.

If you intend to enable other MPL interrupts or to modify the default ISR for the first 4 MPL interrupts, you
need to create another MPL interrupt table which will point towards your own ISR. In this new interrupt
table, put the starting labels for your ISR and use the global symbols: default_intx (x=0 to 11) as labels
for those ISR you don’t want to change. These global symbols contain the start addresses of the default
ISR.

Remark: Some of the drive/motor protections may not work properly if the MPL Interrupts are handled
incorrectly. In order to avoid this situation keep in mind the following rules:

• The MPL interrupts must be kept globally enabled to allow execution of the ISR for those MPL
interrupts triggered by protections. As during a MPL interrupt execution, the MPL interrupts are
globally disabled, you should keep the ISR as short as possible, without waiting loops. If this is not
possible, you must globally enable the interrupts with EINT command during your ISR execution.

• If you modify the interrupt service routines for Int 0 to Int 4, make sure that you keep the original
MPL commands from the default ISR. Put in other words, you may add your own commands, but
these should not interfere with the original MPL commands. Moreover, the original MPL
commands must be present in all the ISR execution paths.

The interrupt flags are set independently of the activation or not of the MPL interrupts. Therefore, as a
general rule, before enabling an interrupt, reset the corresponding flag. This operation will avoid triggering
an interrupt immediately after activation, due to an interrupt flag set in the past.

To summarize, in order to work with a MPL interrupt, you need to:

• Edit your own ISR or decide to use the default ISR.

• Create your own interrupt table, and set the MPL parameter INTTABLE equal with your interrupt
table start address. Exception: if you use only default ISR

• Reset the interrupt flag to avoid entering in an interrupt due to a flag set in the past

© ElectroCraft 2013 321 MPD User Manual

• Enable the MPL interrupt. As the MPL interrupts must be globally enabled, the MPL interrupt is
now activated and your ISR will execute when the interrupt flag will be set.

Default ISR Description

ISR for Int0 – Enable input has changed: When enable input goes from disable to enable status,
executes AXISON if ACR.1 = 1 (i.e. the drive/motor is set to start automatically after power-on with an
external reference) or if ACR.3 = 1 (i.e. specific request to execute AXISON at recover from disable
status). Before executing AXISON, if the drive/motor is set in electronic gearing slave mode, the motion
mode is set again (followed by an update command – UPD) to force a re-initialization for smooth
recoupling with the master.

ISR for Int1 – Short-circuit: Set Ready output (if present) to not ready status and turn off the green led
(if present). Set Error output (if present) to error status and turn on the red led (if present). Execute
AXISOFF and set SRL.3 =1 to set the drive/motor into the FAULT condition.

ISR for Int2 – Software protections: Same as ISR for Int1

ISR for Int3 – Control error: Same as ISR for Int1

See also:

MPL Interrupts – Related MPL Instructions and Data

MPL Description

6.2.3.2.5. MPL Interrupts - Related MPL Instructions and Data

Parameters

INTTABLE Pointer to the start address of the interrupt table

TMLINTPER Time period for the periodic time interrupt Int10. Measured in time_units

Instructions

EINT Globally enables the MPL interrupts. Sets ICR.15 = 1

DINT Globally disables the MPL interrupts. Sets ICR.15 = 0

SRB ICR, ANDm, ORm Individually enable/disable MPL interrupts, by setting/resetting bits from
ICR register according with AND mask ANDm and OR mask ORm

SRB ISR, ANDm, 0; Reset interrupt flags in the ISR register according with AND mask ANDm

RETI Return from a MPL interrupt service routine

Programming Example

Set MPL Int10 to generate a time interrupt at each 0.5s. In the ISR, switch the status of output #25/Ready
to signal that the drive/motor is in standby. Leave the other MPL interrupts with their default ISR.

BEGIN; // MPL program start

INTTABLE = InterruptTable; // set start address for the new interrupt table

ENDINIT; // end of initialization

...

© ElectroCraft 2013 322 MPD User Manual

int Ready_status; // Define integer variable Ready_status

Ready_status = 0; // initialize Ready_status

TMLINTPER = 500; //Set a time interrupt at every 0.5[s]

SRB ICR, 0x8FFF, 0x0400; // Set ICR.10 to enable Int10

...

END; // end of the main section

InterruptTable: // start of the interrupt table

@default_int0;

@default_int1;

@default_int2;

@default_int3;

@default_int4;

@default_int5;

@default_int6;

@default_int7;

@default_int8;

@default_int9;

@int10;

@default_int11;

int10:

GOTO Turn_on, Ready_status, EQ; // Branch to Turn_on if Ready_status == 0

SOUT#25; //Set Low to I/O line #25

Ready_status = 0; // set Ready_status = 0

RETI; // return from interrupt

Turn_on: //Define label Turn_on

ROUT#25; //Set High to I/O line #25

Ready_status = 1; // set Ready_status = 1

RETI;

See also:

MPL Interrupts – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 323 MPD User Manual

6.2.3.3. I/O Programming

6.2.3.3.1. General I/O (Firmware FAxx)

In MPL you can access up to 40 digital I/O lines, numbered: #0 to #39. Each programmable drive/motor
has a specific number of inputs and outputs, therefore only a part of the 40 I/Os is used. The I/O
numbering is common for all the products; hence each product has its own list of available I/Os. This is
not an ordered list. For example, a product with 4 inputs and 4 outputs can use the inputs: #36, #37, #38
and #39 and the outputs #28, #29, #30 and #31.

Remark: Read carefully the drive/motor user manual to find which I/O lines are available. Do not attempt
to use the other I/Os. This may harm your drive/motor.

Some drives/motors include I/O lines that may be used either as inputs or as outputs. In these cases, the
same I/O number occurs both in the list of available inputs and in the list of available outputs. Before
using these lines, you need to specify how you want to use them, with the MPL commands:

SETIO#n OUT; //Set the I/O line #n as an output

SETIO#n IN; //Set the I/O line #n as an input

Remarks:

• Check the drive/motor user manual to find how are set, after power-on, the I/O lines that may be
used either as inputs or as outputs

• You need to set an I/O line as input or output, only once, after power on

You can read and save the status of an input with the MPL command:

user_var = IN#n; // read input #n in the user variable user_var

where user_var is a 16-bit integer variable and n is the input number. If the input line is low (0 logic),
user_var is set to 0, else user_var is set to a non-zero value.

You can set an output high (1 logic) or low (0 logic) with the following commands:

ROUT#n; // Set low the output line #n

SOUT#n; // Set high the output line #n

Remark: Check the drive/motor user manual to find if the I/O lines you are using are passed directly or
are inverted inside the drive/motor. If an I/O line is inverted, you need to switch high with low in the
examples above, which refer to the I/O line status at the drive/motor connector level.

Using MPL command:

 user_var = INPORT, 0xE00F; // read inputs in variable user_var

you can read simultaneously and save in a 16-bit integer variable the status of the following inputs:

• Enable input (#16/ENABLE) – saved in bit 15

• Limit switch input for negative direction (#24/LSN) - saved in bit 14

• Limit switch input for positive direction (#2/LSP) - saved in bit 13

• General-purpose inputs #39, #38, #37 and #36 – save din bits 3, 2, 1 and 0

The bits corresponding to these inputs are set as follows: 0 if the input is low and 1 if the input is high.
The other bits of the variable are set to 0.

© ElectroCraft 2013 324 MPD User Manual

Remark: Each drive/motor contains in the MPL parameter DIGIN_INVERSION_MASK an inversion mask
for these inputs. A bit set to 1 in this mask, means that the corresponding input is inverted. The value set
in user_var is obtained after a logical XOR between the inputs status and the inversion mask. As result,
the bits in user_var always show correctly the inputs status at connectors level (0 if the input is low and 1
if the input is high) even when the inputs are inverted.

Using MPL command:

 OUTPORT user_var; // Send variable user_var to external output port

you can set simultaneously with the command value specified by a 16-bit integer variable, the following
outputs:

• Ready output (#25/READY) – set by bit 15

• Error output (#12/ERROR) – set by bit 14

• General-purpose outputs: #31, #30, #29, #28 – set by bits 3, 2, 1, and 0

The outputs are set as follows: low if the corresponding bit in the variable is 0 and high if the
corresponding bit in the variable is 1. The other bits of the variable are not used.

Remark: Each drive/motor contains in the MPL parameter DIGOUT_INVERSION_MASK an inversion
mask for these outputs. A bit set to 1 in this mask, means that the corresponding output is inverted. The
commands effectively sent to the outputs are obtained after a logical XOR between the user_var value
and the inversion mask. As result, the outputs at connectors level always correspond to the user_var
command values (low if the bit is 0 and high if the bit is 1), even when the outputs are inverted.

General-purpose I/O – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 325 MPD User Manual

6.2.3.3.2. General I/O (Firmware FAxx) - Related MPL Instructions
and Data

Parameters

DIGIN_INVERSION_MASK Inversion mask for the following digital inputs:

• Enable input (#16/ENABLE) – bit 15

• Limit switch input for negative direction (#24/LSN) - bit 14

• Limit switch input for positive direction (#2/LSP) - bit 13

• General-purpose inputs #39, #38, #37 and #36 – bits 3, 2, 1 and 0

A bit set signals that the corresponding input is inverted. The MPL variable INSTATUS as well as the
MPL command INPORT are considering this inversion mask to switch the status of inverted inputs. As
result, in INSTATUS and in the MPL variable set by INPORT, the above bits always show correctly the
inputs status at connectors level (0 if the input is low and 1 if the input is high) even when the inputs are
inverted

DIGOUT_INVERSION_MASK Inversion mask for the following digital outputs:

• Ready output (#25/READY) – set by bit 15

• Error output (#12/ERROR) – set by bit 14

• General-purpose outputs: #31, #30, #29, #28 – set by bits 3, 2, 1, and 0

A bit set signals that the corresponding output is inverted. The MPL command OUTPORT uses this
inversion mask to switch the command for the inverted outputs. As result, the outputs at connectors level
are always set as specified by the above bits in the MPL variable of the OUTPORT command (low if the
bit is 0 and high if the bit is 1), even when the outputs are inverted.

Variables

INSTATUS Provides status of the following digital inputs:

• Enable input (#16/ENABLE) – in bit 15

• Limit switch input for negative direction (#24/LSN) - in bit 14

• Limit switch input for positive direction (#2/LSP) - in bit 13

• General-purpose inputs #39, #38, #37 and #36 – in bits 3, 2, 1 and 0

The above bits are set to 0 if the input is low (at connectors level) and 1 if the input is high (at connectors
level). The information is automatically corrected in the case of inverted inputs. The other bits INSTATUS
have no significance.

Instructions

user_var = IN#n Read input #n in the user variable user_var

OUTPORTvalue16 Set simultaneously the output lines as specified by value16

ROUT#n Set low the output line #n

SOUT#n Set high the output line #n

SETIO#n OUT; Set the I/O line #n as an input

© ElectroCraft 2013 326 MPD User Manual

SETIO #n IN; Set the I/O line #n as an output

Programming Example

user_var = IN#36; // read input #36 in user_var

GOTO label1, user_var, NEQ; // go to label1 if input #36 is 1

// input #36 is 0

user_var = IN#39; // read input #39 in user_var

GOTO label2, user_var, EQ; // go to label2 if input #39 is 0

// input #39 is 1

...

Label1: // input #36 is 1

...

Label2: // input #39 is 0

...

See also:

General-purpose I/O – MPL Programming Details

MPL Description

© ElectroCraft 2013 327 MPD User Manual

6.2.3.3.3. Special I/O (Firmware FAxx)

In MPL, there are 5 inputs and 2 outputs that have dedicated functions. These are:

• Enable input: #16/ENABLE

• 2 limit switch inputs: #2/LSP and #24/LSN

• 2 capture inputs: #5/CAPI and #34/2CAPI

• Ready output: #25/READY

• Error output: #12/ERROR

Remark: On some drives/motors only a part if these special I/O is available. When present, the capture
and limit switch inputs and always connected to the same I/O numbers. However, the Enable input as
well as the Ready and Error outputs may be assigned to other I/O lines. Their I/O number allocation is
specific for each product.

The enable input is a safety input, and can be: active or inactive. On the active level, it enables normal
operation. On the inactive level it disables the drive/motor similarly with the AXISOFF command. When
the enable input goes from inactive to active level and AXISON command is automatically performed if
ACR.1 = 1 or ACR.3 = 1.

The active level is programmable: low or high via MPL parameter DIGIN_ACTIVE_LEVEL as follows:

• If DIGIN_ACTIVE_LEVEL.15 = 1, #16/ENABLE is active when the input is high

• If DIGIN_ACTIVE_LEVEL.15 = 0, #16/ENABLE is active when the input is low

Remark: The enable input high/low refers to the input level at drive/motor connector. After power on, the
active level is set to enable normal operation with nothing connected on the input

The limit switch inputs main goal is to protect against accidental moves outside a defined working area.
The protection involves connecting limit switches to:

• #2/LSP to stop movement in positive direction

• #24/LSN to stop movement in negative direction

A limit switch input can be: active or inactive. The active level is programmable: low or high via MPL
parameter DIGIN_ACTIVE_LEVEL as follows:

• If DIGIN_ACTIVE_LEVEL.14 = 1, #24/LSN is active when the input is high

• If DIGIN_ACTIVE_LEVEL.14 = 0, #24/LSN is active when the input is low

• If DIGIN_ACTIVE_LEVEL.13 = 1, #2/LSP is active when the input is high

• If DIGIN_ACTIVE_LEVEL.13 = 0, #2/LSP is active when the input is low

Remark: The limit switch inputs high/low refers to the inputs level at drive/motor connector. After power
on, the active level is set to have both limit switches inactive with nothing connected on these inputs

When positive limit switch #2/LSP input is active, movement is possible only in the negative direction. Any
attempt to move in the positive direction will set the drive/motor in quick stop mode, and this will stop the
move with the deceleration rate set in MPL parameters CDEC.

When negative limit switch #24/LSN input is active, movement is possible only in the positive direction.
Any attempt to move in the negative direction will set the drive/motor in quick stop mode, and this will stop
the move with the deceleration rate set in MPL parameters CDEC.

© ElectroCraft 2013 328 MPD User Manual

Remark: The drive/motor exits from quick stop mode only by setting a new motion mode.

The limit switch inputs may also be used as capture inputs due to their capability to sense low to high or
high to low transitions and to capture the motor, load or master position when these transitions occur. The
limit switch inputs capturing behavior is identical with that of the capture inputs #5/CAPI and #34/2CAPI
and therefore is presented below together with the capture inputs.

You can set either an event or a MPL interrupt, for each limit switch input, to detect when a programmed
transition has occurred. In both cases you need to:

1. Enable limit switch input capability to detect a low->high or a high-> low transition with one of the
following MPL instructions:

ENLSP0; //Enable #2/LSP to detect a high->low transition

ENLSP1; //Enable #2/LSP to detect a low->high transition

ENLSN0; //Enable #24/LSN to detect a high->low transition

ENLSN1; //Enable #24/LSN to detect a low->high transition

2. Set:

• A limit switch event with !LSP or !LSN, then wait until the event occurs with WAIT!;, or

• Enable the LSP or LSN MPL interrupt with the MPL commands:

SRB ICR 0xFFFF,0x0040;// Set ICR.6 = 1 to enable LSP interrupt

SRB ICR 0xFFFF,0x0080;// Set ICR.7 = 1 to enable LSN interrupt

Remarks:

• The main task of the limit switches i.e. to protect against accidental moves outside the working
area is performed independently of the fact that limit switches may be enabled or not to detect
transitions

• A limit switch input capability to detect transitions is automatically disabled, after the programmed
transition was detected. In order to reuse it, you need to enable it again.

• You may also disable a limit switch input capability to detect transitions, using the MPL
commands: DISLSP, DISLSN

You can also use the limit switch inputs as general-purpose inputs by disabling their capability to protect
against accidental moves outside a defined working area. For this you need to set MPL parameter
LSACTIVE = 1. This command, doesn’t affect the limit switch inputs capability to detect transitions.

Remark: After power on, LSACTIVE = 0 and the limit switches are active.

You can read the limit switches inputs, at any moment, independently of LSACTIVE value, like any other
inputs using the MPL instructions:

var = IN#2; // read status of the positive limit switch input

var = IN#24; // read status of the negative limit switch input

The capture inputs are special inputs that can be programmed to sense either a low to high or high to
low transition and capture the motor, load or master position with very high accuracy when these
transitions occur.

Typically, the 1st encoder index is connected to the 1st capture input – #5/CAPI, and the 2nd encoder
index is connected to the 2nd capture input – #34/2CAPI.

© ElectroCraft 2013 329 MPD User Manual

When an incremental encoder provides the motor position, its signals are always connected to the 1st
encoder interface. When an incremental encoder provides the master position, its signals are always
connected to the 2nd encoder interface. When an incremental encoder provides the load position, its
signals are connected to:

• 2nd encoder interface, if there is another sensor on the motor (for example DC motor with
encoder on load and tachometer on the motor)

• 1st encoder interface, if there is no other sensor on the motor (for example steppers controlled
open-loop with an encoder on the load)

When the programmed transition occurs on any capture or limit switch input, the following happens:

• Motor position APOS_MT is captured and memorized in the MPL variable CAPPOS, except the
case of open-loop systems, where reference position TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and memorized in the MPL variable
CAPPOS2, except the case of steppers controlled open loop with an encoder on the load, when
load position is captured in CAPPOS.

The selection between master and load position is done as follows: load position is saved in CAPPOS2
only for the setup configurations which use different sensors for load and motor and foresee a
transmission ratio between them. For all the other setup configurations, the master position is saved in
CAPPOS2. The master position is automatically computed when pulse and direction signals or
quadrature encoder signals are connected to their dedicated inputs.

When an incremental encoder is connected to the 1st encoder interface and 1st capture/encoder index
detects the programmed transition, the position captured in CAPPOS is very accurate, being read in less
than 200 ns after the input transition. The position captured in CAPPOS2 is also accurate being read with
a maximum delay of 5μs.

When an incremental encoder is connected to the 2nd encoder interface or when master position is set
via pulse & direction signals and 2nd capture/encoder index detects the programmed transition, the
position captured in CAPPOS2 is very accurate, being read in less than 200 ns, after the input transition.
The position captured in CAPPOS2 is read with a maximum delay of 5μs.

When any of the 2 limit switch inputs detects the programmed transition, the positions captured in
CAPPOS and CAPPOS2 are accurate, both being read with a maximum delay of 5μs.

You can set either an event or a MPL interrupt on a capture input. In both cases you need to:

1. Enable the capture input for the detection of a low->high or a high-> low transition with one of the
following MPL instructions:

ENCAPI0; //Enable #5/CAPI to detect a high->low transition

ENCAPI1; //Enable #5/CAPI to detect a low->high transition

EN2CAPI0; //Enable #34/2CAPI to detect a high->low transition

EN2CAPI1; //Enable #34/2CAPI to detect a low->high transition

2. Set:

• A capture event with !CAP, then wait until the event occurs with WAIT!;, or

• Enable the MPL capture interrupt with the MPL command:
SRB ICR 0xFFFF,0x0100; //Set ICR.8 = 1

Remarks:

© ElectroCraft 2013 330 MPD User Manual

• If both capture inputs are activated in the same time, the capture event and the MPL capture
interrupt flag is set by the capture input that is triggered first. The capture event or the MPL
capture interrupt makes no difference between the two capture inputs.

• When the programmed transition is detected, the capture input is automatically disabled. In order
to reuse it, you need to enable it again for the desired transition

• You may also disable a capture input (i.e. its capability to detect a programmed transition)
previously enabled, using the MPL commands: DISCAPI, DIS2CAPI

See also:

Special I/O – Related MPL Instructions and Data

MPL Description

6.2.3.3.4. Special I/O (Firmware FAxx) - Related MPL Instructions
and Data

Parameters

DIGIN_ACTIVE_LEVEL Sets active levels for enable and limit switch inputs as follows:

• Enable input (#16/ENABLE) – bit 15: 0 – low, 1 – high

• Limit switch input for negative direction (#24/LSN) - on bit 14: 0 – low, 1 – high

• Limit switch input for positive direction (#2/LSP) - on bit 13: 0 – low, 1 – high

LSACTIVE When set to a non-zero value, disables limit switch inputs capability to protect against
accidental moves outside a defined working area. In this case, the limit switch inputs are treated like 2
extra general-purpose inputs

CDEC Command deceleration for quick stop mode. Measured in acceleration units

ICR Interrupt Control Register. The MPL interrupts can be enabled or disabled by setting or resetting
the corresponding bits from this register

ACR Auxiliary Control Register. If ACR.1 = 1 the drive/motor is set to start automatically after power-on
with an external reference. If ACR.3 = 1 there is a specific request to execute AXISON at recover from
disable status. In both cases, an AXISON is executed when enable input goes from inactive to active
status.

Variables

CAPPOS Position captured when programmed transition occurs on 1st capture/encoder index
input. Measured in motor position units, except the case of stepper motors, when it is
measured in position units

CAPPOS2 Position captured when programmed transition occurs on 2nd capture/encoder index
input. Measured in position units when load position is captured, or in master position
units when master position is captured

APOS2 Master position computed by the slaves from pulse & direction or quadrature encoder
inputs. Measured in master position units

© ElectroCraft 2013 331 MPD User Manual

TPOS Target position – position reference computed by the reference generator at each slow
loop sampling period. Measured in position units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

APOS_MT Actual motor position. Measured in motor position units.

Instructions

!CAP Set event on capture inputs

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low transition

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high transition

!LSN Set event on negative limit switch input

!LSP Set event on positive limit switch input

ENLSP0 Enable positive limit switch input to detect a high to low transition

ENLSN0 Enable negative limit switch input to detect a high to low transition

ENLSP1 Enable positive limit switch input to detect a low to high transition

ENLSN1 Enable negative limit switch input to detect a low to high transition

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

DISLSP Disable positive limit switch input to detect transitions

DISLSN Disable negative limit switch input to detect transitions

UPD! Update the motion mode and/or the motion parameters when the programmed event
occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the programmed
event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16, the wait
ends after the time interval specified in this 16-bit integer value. Value16 is measured in
time units

SRB Set/reset bits from a MPL data

© ElectroCraft 2013 332 MPD User Manual

Programming Example

//Stop motion on next encoder index

ENCAPI1; //Set event: When the encoder index goes low->high

!CAP;

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

See also:

Special I/O – MPL Programming Details

MPL Description

6.2.3.3.5. General-purpose I/O (Firmware FBxx)

In MPL you can access up to 16 digital input and 16 digital output lines, numbered: 0 to 15. Each
programmable drive/motor has a specific number of inputs and outputs, therefore only a part of the 16
inputs or 16 outputs is used. The I/O numbering is common for all the products; hence each product has
its own list of available I/Os. This is an ordered list. For example, a product with 4 inputs and 4 outputs
can use the inputs: 0, 1, 2 and 3 and the outputs 0, 1, 2 and 3.

Remark: Read carefully the drive/motor user manual to find which I/O lines are available. Do not attempt
to use the other I/Os. This may harm your drive/motor.

Some drives/motors include I/O lines that may be used either as inputs or as outputs. Before using these
lines, you need to specify how you want to use them, with the MPL commands:

SetAsInput(n); //Set the IO line n as an input

SetAsOutput(n); //Set the IO line n as an output

Remarks:

• Check the drive/motor user manual to find how are set, after power-on, the I/O lines that may be
used either as inputs or as outputs

• You need to set an I/O line as input or output, only once, after power on

You can read and save the status of an input with the MPL command:

user_var = IN(n); //Read IO line n data into variable user_var

where user_var is a 16-bit integer variable and n is the input number. If the input line is low (0 logic),
user_var is set to 0, else user_var is set to a non-zero value.

© ElectroCraft 2013 333 MPD User Manual

You can set an output high (1 logic) or low (0 logic) with the following commands:

OUT(n)=value16; // Set IO line n according with its
corresponding bit from value16

Remark: Check the drive/motor user manual to find if the I/O lines you are using are passed directly or
are inverted inside the drive/motor. If an I/O line is inverted, you need to switch high with low in the
examples above, which refer to the I/O line status at the drive/motor connector level.

Using MPL command:

 user_var = IN(n1,n2,n3,…); // Set corresponding bits from a according
with selected inputs status

you can read simultaneously and save in a 16-bit integer variable the status of the selected inputs.

The bits corresponding to these inputs are set as follows: 0 if the input is low and 1 if the input is high.
The other bits of the variable are set to 0.

Remark: Each drive/motor contains in the MPL parameter DIGIN_INVERSION_MASK an inversion mask
for these inputs. A bit set to 1 in this mask, means that the corresponding input is inverted. The value set
in user_var is obtained after a logical XOR between the inputs status and the inversion mask. As result,
the bits in user_var always show correctly the inputs status at connectors level (0 if the input is low and 1
if the input is high) even when the inputs are inverted.

Using MPL command:

 OUT(n1, n2, n3,…) = value16; // Set outputs n1, n2, n3, … according
with corresponding bits from value16

you can set simultaneously with the command value specified by a 16-bit integer variable, the selected
outputs.

The outputs are set as follows: low if the corresponding bit in the variable is 0 and high if the
corresponding bit in the variable is 1. The other bits of the variable are not used.

Remark: Each drive/motor contains in the MPL parameter DIGOUT_INVERSION_MASK an inversion
mask for these outputs. A bit set to 1 in this mask, means that the corresponding output is inverted. The
commands effectively sent to the outputs are obtained after a logical XOR between the immediate or
user_var value and the inversion mask. As result, the outputs at connectors level always correspond to
the immediate or user_var command values (low if the bit is 0 and high if the bit is 1), even when the
outputs are inverted.

General-purpose I/O – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 334 MPD User Manual

6.2.3.3.6. General-purpose I/O – Related MPL Instructions and Data
(Firmware FBxx)

Variables

INSTATUS Provides status of the following digital inputs:

The above bits are set to 0 if the input is low (at connectors level) and 1 if the input is high (at connectors
level). The information is automatically corrected in the case of inverted inputs. The other bits INSTATUS
have no significance.

Instructions

user_var = IN(n) Read input n in the user variable user_var

user_var = IN(n1, n2, n3, …) Read inputs n1, n2, n3,… in the user variable user_var

OUT(n) =value16 Set the output line as specified by value16

OUT(n1, n2, n3, …) =value16 Set the output lines n1 n2, n3 as specified by value16

SetAsInput(n); Set the I/O line #n as an input

SetAsOutput(n); Set the I/O line #n as an output

Programming Example

user_var = IN#36; // read input #36 in user_var

GOTO label1, user_var, NEQ; // go to label1 if input #36 is 1

// input #36 is 0

user_var = IN#39; // read input #39 in user_var

GOTO label2, user_var, EQ; // go to label2 if input #39 is 0

// input #39 is 1

...

Label1: // input #36 is 1

...

Label2: // input #39 is 0

...

See also:

General-purpose I/O – MPL Programming Details

MPL Description

© ElectroCraft 2013 335 MPD User Manual

6.2.3.3.7. Special I/O - MPL Programming Details (Firmware FBxx)

In MPL, there are 5 inputs and 2 outputs that have dedicated functions. These are:

• Enable input

• 2 limit switch inputs

• 2 capture inputs

• Ready output

• Error output

Remark: On some drives/motors only a part if these special I/O is available. When present, the capture
and limit switch inputs and always connected to the same I/O numbers. However, the Enable input as
well as the Ready and Error outputs may be assigned to other I/O lines. Their I/O number allocation is
specific for each product.

The enable input is a safety input, and can be: active or inactive. On the active level, it enables normal
operation. On the inactive level it disables the drive/motor similarly with the AXISOFF command. When
the enable input goes from inactive to active level and AXISON command is automatically performed if
ACR.1 = 1 or ACR.3 = 1.

The active level is programmable: low or high via MPL parameter DIGIN_ACTIVE_LEVEL as follows:

• If DIGIN_ACTIVE_LEVEL.15 = 1, Enable is active when the input is high

• If DIGIN_ACTIVE_LEVEL.15 = 0, Enable is active when the input is low

Remark: The enable input high/low refers to the input level at drive/motor connector. After power on, the
active level is set to enable normal operation with nothing connected on the input

The limit switch inputs main goal is to protect against accidental moves outside a defined working area.
The protection involves connecting limit switches to:

• LSP input to stop movement in positive direction

• LSN input to stop movement in negative direction

A limit switch input can be: active or inactive. The active level is programmable: low or high via MPL
parameter DIGIN_ACTIVE_LEVEL as follows:

• If DIGIN_ACTIVE_LEVEL.14 = 1, Limit Switch Negative is active when the input is high

• If DIGIN_ACTIVE_LEVEL.14 = 0, Limit Switch Negative is active when the input is low

• If DIGIN_ACTIVE_LEVEL.13 = 1, Limit Switch Positive is active when the input is high

• If DIGIN_ACTIVE_LEVEL.13 = 1, Limit Switch Positive is active when the input is low

Remark: The limit switch inputs high/low refers to the inputs level at drive/motor connector. After power
on, the active level is set to have both limit switches inactive with nothing connected on these inputs

When positive limit switch input is active, movement is possible only in the negative direction. Any attempt
to move in the positive direction will set the drive/motor in quick stop mode, and this will stop the move
with the deceleration rate set in MPL parameters CDEC.

When negative limit switch input is active, movement is possible only in the positive direction. Any attempt
to move in the negative direction will set the drive/motor in quick stop mode, and this will stop the move
with the deceleration rate set in MPL parameters CDEC.

© ElectroCraft 2013 336 MPD User Manual

Remark: The drive/motor exits from quick stop mode only by setting a new motion mode.

The limit switch inputs may also be used as capture inputs due to their capability to sense low to high or
high to low transitions and to capture the motor, load or master position when these transitions occur. The
limit switch inputs capturing behavior is identical with that of the capture inputs and therefore is presented
below together with the capture inputs.

You can set either an event or a MPL interrupt, for each limit switch input, to detect when a programmed
transition has occurred. In both cases you need to:

1. Enable limit switch input capability to detect a low->high or a high-> low transition with one of the
following MPL instructions:

ENLSP0; //Enable Positive Limit Switch to detect a high->low
transition

ENLSP1; //Enable Positive Limit Switch to detect a low->high
transition

ENLSN0; //Enable Negative Limit Switch to detect a high->low
transition

ENLSN1; //Enable Negative Limit Switch to detect a low->high
transition

2. Set:

• A limit switch event with !LSP or !LSN, then wait until the event occurs with WAIT!;, or

• Enable the LSP or LSN MPL interrupt with the MPL commands:

SRB ICR 0xFFFF,0x0040; //Set/Reset Bits of Interrupt Control Register

SRB ICR 0xFFFF,0x0080; //Set/Reset Bits of Interrupt Control Register

Remarks:

• The main task of the limit switches i.e. to protect against accidental moves outside the working
area is performed independently of the fact that limit switches may be enabled or not to detect
transitions

• A limit switch input capability to detect transitions is automatically disabled, after the programmed
transition was detected. In order to reuse it, you need to enable it again.

• You may also disable a limit switch input capability to detect transitions, using the MPL
commands: DISLSP, DISLSN

You can also use the limit switch inputs as general-purpose inputs by disabling their capability to protect
against accidental moves outside a defined working area. For this you need to set MPL parameter
LSACTIVE = 1. This command, doesn’t affect the limit switch inputs capability to detect transitions.

Remark: After power on, LSACTIVE = 0 and the limit switches are active.

You can read the limit switches inputs, at any moment, independently of LSACTIVE value, like any other
inputs using the MPL instructions:

var = IN#2; // read status of the positive limit switch input

var = IN#24; // read status of the negative limit switch input

The capture inputs are special inputs that can be programmed to sense either a low to high or high to
low transition and capture the motor, load or master position with very high accuracy when these
transitions occur.

© ElectroCraft 2013 337 MPD User Manual

Typically, the 1st encoder index is connected to the 1st capture input – #5/CAPI, and the 2nd encoder
index is connected to the 2nd capture input – #34/2CAPI.

When an incremental encoder provides the motor position, its signals are always connected to the 1st
encoder interface. When an incremental encoder provides the master position, its signals are always
connected to the 2nd encoder interface. When an incremental encoder provides the load position, its
signals are connected to:

• 2nd encoder interface, if there is another sensor on the motor (for example DC motor with
encoder on load and tachometer on the motor)

• 1st encoder interface, if there is no other sensor on the motor (for example steppers controlled
open-loop with an encoder on the load)

When the programmed transition occurs on any capture or limit switch input, the following happens:

• Motor position APOS_MT is captured and memorized in the MPL variable CAPPOS, except the
case of open-loop systems, where reference position TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and memorized in the MPL variable
CAPPOS2, except the case of steppers controlled open loop with an encoder on the load, when
load position is captured in CAPPOS.

The selection between master and load position is done as follows: load position is saved in CAPPOS2
only for the setup configurations which use different sensors for load and motor and foresee a
transmission ratio between them. For all the other setup configurations, the master position is saved in
CAPPOS2. The master position is automatically computed when pulse and direction signals or
quadrature encoder signals are connected to their dedicated inputs.

When an incremental encoder is connected to the 1st encoder interface and 1st capture/encoder index
detects the programmed transition, the position captured in CAPPOS is very accurate, being read in less
than 200 ns after the input transition. The position captured in CAPPOS2 is also accurate being read with
a maximum delay of 5μs.

When an incremental encoder is connected to the 2nd encoder interface or when master position is set
via pulse & direction signals and 2nd capture/encoder index detects the programmed transition, the
position captured in CAPPOS2 is very accurate, being read in less than 200 ns, after the input transition.
The position captured in CAPPOS2 is read with a maximum delay of 5μs.

When any of the 2 limit switch inputs detects the programmed transition, the positions captured in
CAPPOS and CAPPOS2 are accurate, both being read with a maximum delay of 5μs.

You can set either an event or a MPL interrupt on a capture input. In both cases you need to:

1. Enable the capture input for the detection of a low->high or a high-> low transition with one of the
following MPL instructions:

ENCAPI0; //Activate CAPI input to trigger a rising transitions

ENCAPI1; //Activate CAPI input to trigger a falling transitions

EN2CAPI0; //Activate CAPI input to trigger a rising transitions

EN2CAPI1; //Activate CAPI input to trigger a falling transitions

2. Set:

• A capture event with !CAP, then wait until the event occurs with WAIT!;, or

• Enable the MPL capture interrupt with the MPL command:

SRB ICR 0xFFFF,0x0100; //Set/Reset Bits of Interrupt Control Register

© ElectroCraft 2013 338 MPD User Manual

Remarks:

• If both capture inputs are activated in the same time, the capture event and the MPL capture
interrupt flag is set by the capture input that is triggered first. The capture event or the MPL
capture interrupt makes no difference between the two capture inputs.

• When the programmed transition is detected, the capture input is automatically disabled. In order
to reuse it, you need to enable it again for the desired transition

• You may also disable a capture input (i.e. its capability to detect a programmed transition)
previously enabled, using the MPL commands: DISCAPI, DIS2CAPI

See also:

Special I/O – Related MPL Instructions and Data

MPL Description

6.2.3.3.8. Special I/O - Related MPL Instructions and Data (Firmware
FBxx)

Parameters

DIGIN_ACTIVE_LEVEL Sets active levels for enable and limit switch inputs as follows:

• Enable input – on bit 15: 0 – low, 1 – high

• Limit switch input for negative direction – on bit 14: 0 – low, 1 – high

• Limit switch input for positive direction – on bit 13: 0 – low, 1 – high

LSACTIVE When set to a non-zero value, disables limit switch inputs capability to protect against
accidental moves outside a defined working area. In this case, the limit switch inputs are treated like 2
extra general-purpose inputs

CDEC Command deceleration for quick stop mode. Measured in acceleration units

ICR Interrupt Control Register. The MPL interrupts can be enabled or disabled by setting or resetting
the corresponding bits from this register

ACR Auxiliary Control Register. If ACR.1 = 1 the drive/motor is set to start automatically after power-on
with an external reference. If ACR.3 = 1 there is a specific request to execute AXISON at recover from
disable status. In both cases, an AXISON is executed when enable input goes from inactive to active
status.

Variables

CAPPOS Position captured when programmed transition occurs on 1st capture/encoder index
input. Measured in motor position units, except the case of stepper motors, when it is
measured in position units

CAPPOS2 Position captured when programmed transition occurs on 2nd capture/encoder index
input. Measured in position units when load position is captured, or in master position
units when master position is captured

APOS2 Master position computed by the slaves from pulse & direction or quadrature encoder
inputs. Measured in master position units

© ElectroCraft 2013 339 MPD User Manual

TPOS Target position – position reference computed by the reference generator at each slow
loop sampling period. Measured in position units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

APOS_MT Actual motor position. Measured in motor position units.

Instructions

!CAP Set event on capture inputs

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low transition

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high transition

!LSN Set event on negative limit switch input

!LSP Set event on positive limit switch input

ENLSP0 Enable positive limit switch input to detect a high to low transition

ENLSN0 Enable negative limit switch input to detect a high to low transition

ENLSP1 Enable positive limit switch input to detect a low to high transition

ENLSN1 Enable negative limit switch input to detect a low to high transition

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

DISLSP Disable positive limit switch input to detect transitions

DISLSN Disable negative limit switch input to detect transitions

UPD! Update the motion mode and/or the motion parameters when the programmed event
occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the programmed
event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16, the wait
ends after the time interval specified in this 16-bit integer value. Value16 is measured in
time units

SRB Set/reset bits from a MPL data

© ElectroCraft 2013 340 MPD User Manual

Programming Example

//Stop motion on next encoder index

ENCAPI1; //Set event: When the encoder index goes low->high

!CAP;

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

See also:

Special I/O – MPL Programming Details

MPL Description

6.2.3.4. Assignment and Data Transfer

6.2.3.4.1. Setup 16-bit variable

The MPL instructions presented in this paragraph show you the options you have to:

1. Assign a value to a 16-bit integer MPL data

2. Transfer in a memory location, a 16-bit value or the value of a 16-bit integer MPL data

In the first case, the destination is a 16-bit MPL data: MPL register, MPL parameter or user variable and
the source can be:

• A 16-bit immediate value or a label

• A 16-bit MPL data: MPL register, parameter, variable or user variable (direct or negated)

• The high or low part of a 32-bit MPL data: MPL parameter, variable or user variable

• A memory location indicated through a pointer variable

• The result of the checksum performed with all locations situated between 2 memory addresses
specified either as immediate values or via 2 pointer variables.

In the second case and the destination is a memory location indicated through a pointer variable and the
source can be:

• A 16-bit immediate value

• A 16-bit MPL data: MPL register, parameter, variable or user variable

Programming Examples

© ElectroCraft 2013 341 MPD User Manual

1) Source: 16-bit immediate value, Destination: 16-bit MPL data. The immediate value can be decimal or
hexadecimal

 user_var = 100; // set user variable user_var with value 100

 user_var = 0x100; // set user variable user_var with value 0x100 (256)

label1:

 user_var = label; // set user variable user_var with label1 value

2) Source: 16-bit MPL data, Destination: 16-bit MPL data.

 var_dest = var_source; // copy value of var_source in var_dest

 var_dest = -var_source; // copy negate value of var_source in var_dest

3) Source: high or low part of a 32-bit MPL data, Destination: 16-bit MPL data. The 32-bit MPL data can
be either long or fixed

 int_var = long_var(L); // copy low part of long_var in int_var

 int_var = fixed_var(H); // copy high part of fixed_var in int_var

4) Source: a memory location indicated through a pointer variable, Destination: 16-bit MPL data. The
memory location can be of 3 types: RAM for data (dm), RAM for MPL programs (pm), EEPROM SPI-
connected for MPL programs (spi). If the pointer variable is followed by a + sign, after the assignment, the
pointer variable is incremented by 1

 p_var = 0x4500; // set 0x4500 in pointer variable p_var

 var1 = (p_var),spi; // var1 = value of the EEPROM memory location 0x4500

 var1 = (p_var+),spi; // var1 = value of the EEPROM memory location 0x4500

// p_var = 0x4501

 p_var = 0x8200; // set 0x8200 in pointer variable p_var

 var1 = (p_var),pm; // var1 = value of the RAM memory location 0x8200 for

//MPL programs

 var1 = (p_var+),pm; // var1 = value of the RAM memory location 0x8200 fior

//MPL programs, then set p_var = 0x8201

 p_var = 0xA00; // set 0xA00 in pointer variable p_var

 var1 = (p_var),dm; // var1 = value of the RAM memory location 0xA00 for

//MPL data

 var1 = (p_var+),dm; // var1 = value of the RAM memory location 0xA00 for

//MPL data, then set p_var = 0xA01

5) Source: the result of the checksum. Destination: 16-bit MPL data. The checksum is performed with all
locations situated between 2 memory addresses. These are specified either as immediate values or via 2
pointer variables. The memory can be of 3 types: RAM for data (dm), RAM for MPL programs (pm),
EEPROM SPI-connected for MPL programs (spi).

checksum, spi 0x4000, 0x4500, var1; // var1=checksum value computed

// between EEPROM memory addresses 0x4000 and 0x4500

© ElectroCraft 2013 342 MPD User Manual

start = 0x9000; // set start address = 0x9000

end = 0x9100; // set end address = 0x9100

checksum, pm start, stop, var1; // var1=checksum value computed

// between RAM (for MPL programs) addresses 0x9000 and 0x9100 pointed by the MPL

// variables start and stop

6) Source: 16-bit immediate value (decimal or hexadecimal) or 16-bit MPL data. Destination: a memory
location indicated through a pointer variable. The memory location can be of 3 types: RAM for data (dm),
RAM for MPL programs (pm), EEPROM SPI-connected for MPL programs (spi). If the pointer variable is
followed by a + sign, after the assignment, the pointer variable is incremented by 1

p_var = 0x4500; // set 0x4500 in pointer variable p_var

(p_var),spi = -5; // write value –5 in the EEPROM memory location

// 0x4500

(p_var+),spi = var1; // write var1 value in the EEPROM memory location

// 0x4500, then set p_var = 0x4501

p_var = 0x8200; // set 0x8200 in pointer variable p_var

(p_var),pm = 0x10; // write value 0x10 in RAM memory location 0x8200 for

// MPL programs

(p_var+),pm = var1; // write var1 value in RAM memory location 0x8200 for

// MPL programs, then set p_var = 0x8201

p_var = 0xA00; // set 0xA00 in pointer variable p_var

(p_var),dm = 50; // write value 50 in the RAM memory location 0xA00 for

// MPL data

(p_var+),dm = var1; // write var1 value in the RAM memory location 0xA00

// for MPL data, then set p_var = 0xA01

Remark: The MPL assignment instructions with source an immediate value or a MPL data and
destination a MPL data, use a short address format for the destination. The short address format
requires a destination address between 0x200 and 0x3FF or between 0x800 and 0x9FF. This restriction
is respected now by all the predefined or user-defined MPL data, hence you can use the above
assignment instructions without checking the variables addresses.

However, considering possible future developments, the MPL also includes assignment instructions using
a full address format where the destination address can be any 16-bit value. The following commands
support full addressing:

int_var,dm = 100; // set int_var = 100 using full addressing

int_var,dm = 0x100; // set int_var = 0x100(256) using full addressing

var_dest,dm = var_source; // copy value of var_source in var_dest using

// full addressing

See also:

Assignment and Data Transfer. 32-bit data – MPL Programming Details

MPL Description

© ElectroCraft 2013 343 MPD User Manual

6.2.3.4.2. Setup 32-bit variable

The MPL instructions presented in this paragraph show you the options you have to:

1. Assign a value to a 32-bit long or fixed MPL data

2. Assign a value to the high (16MSB) or low (16LSB) part of a 32-bit long or fixed data

3. Transfer in 2 consecutive memory locations, a 32-bit value or the value of a 32-bit long or fixed
MPL data

In the first case, the destination is a 32-bit MPL data: MPL parameter or user variable and the source can
be:

• A 32-bit immediate value

• A 32-bit MPL data: MPL register, parameter, variable or user variable (direct or negated)

• A 16-bit MPL data left shifted by 0 to 16

• 2 consecutive memory locations, indicated through a pointer variable

In the second case, the destination is the high or low part of a 32-bit MPL data: MPL parameter or user
variable and the source can be:

• A 16-bit immediate value

• A 16-bit MPL data: MPL register, parameter, variable or user variable

In the third case, the destination is 2 consecutive memory locations, indicated through a pointer variable
and the source can be:

• A 32-bit immediate value

• A 32-bit MPL data: MPL parameter, variable or user variable

ProgrammingProgrammable Examples

1) Source: 32-bit immediate value, Destination: 32-bit MPL data. The immediate value can be decimal or
hexadecimal. The destination can be either a long or a fixed variable

 long_var = 100000; // set user variable long_var with value 100000

 long_var = 0x100000; // set user variable long_var with value 0x100000

 fixed_var = 1.5; // set user variable fixed_var with value 1.5 (0x18000)

 fixed_var = 0x14000; // set user variable fixed_var with value 1.25 (0x14000)

2) Source: 32-bit MPL data, Destination: 32-bit MPL data.

 var_dest = var_source; // copy value of var_source in var_dest

 var_dest = -var_source; // copy negate value of var_source in var_dest

Remark: source and destination must be of the same type i.e. both long or both fixed

3) Source: 16-bit immediate value (decimal or hexadecimal) or 16-bit MPL data, Destination: high or low
part of a 32-bit MPL data. The 32-bit MPL data can be either long or fixed

 long_var(L) = -1; // write value –1 (0xFFFF) into low part of long_var

 fixed_var(H) = 0x2000; // write value 0x2000 into high part of fixed_var

© ElectroCraft 2013 344 MPD User Manual

 long_var(L) = int_var; // copy int_var into low part of long_var

 fixed_var(H) = int_var; // copy int_var into high part of fixed_var

4) Source: 16-bit MPL data left shifted 0 to 16. Destination: 32-bit MPL data. The 32-bit MPL data can be
either long or fixed

 long_var = int_var << 0; // copy int_var left shifted by 0 into long_var

 fixed_var = int_var << 16; // copy int_var left shifted by 16 fixed_var

Remarks:

• The left shift operation is done with sign extension. If you intend to copy the value of an integer
MPL data into a long MPL data preserving the sign use this operation with left shift 0

• If you intend to copy the value of a 16-bit unsigned data into a 32-bit long variable, assign the 16-
bit data in low part of the long variable and set the high part with zero.

Examples:

var = 0xFFFF; // As integer, var = 1, as unsigned integer var = 65535

lvar = var << 0; // lvar = -1 (0xFFFFFFFF), the 16MSB of lvar are all set to 1 the

// sign bit of var

lvar(L) = var; // lvar(L) = 0xFFFF

lvar(H) = 0; // lvar(H) = 0. lvar = 65535 (0x0000FFFF)

5) Source: 2 consecutive memory locations, indicated through a pointer variable, Destination: 32-bit MPL
data. The memory locations can be of 3 types: RAM for data (dm), RAM for MPL programs (pm),
EEPROM SPI-connected for MPL programs (spi). The pointer variable indicates first of the 2 memory
locations. If the pointer variable is followed by a + sign, after the assignment, it is incremented by 2. The
destination can be either a long or a fixed MPL data

 p_var = 0x4500; // set 0x4500 in pointer variable p_var

 var1 = (p_var),spi; // var1 = value of the EEPROM memory location 0x4500

 var1 = (p_var+),spi; // var1 = value of the EEPROM memory location 0x4500,

 // then set p_var = 0x4502

 p_var = 0x8200; // set 0x8200 in pointer variable p_var

 var1 = (p_var),pm; // var1 = value of the RAM memory location 0x8200 for MPL

 // programs

 var1 = (p_var+),pm; // var1 = value of the RAM memory location 0x8200 for MPL

 // programs, then set p_var = 0x8202

 p_var = 0xA00; // set 0xA00 in pointer variable p_var

 var1 = (p_var),dm; // var1 = value of the RAM memory location 0xA00 for MPL

 // data

 var1 = (p_var+),dm; // var1 = value of the RAM memory location 0xA00 for MPL

 // data, then set p_var = 0xA02

© ElectroCraft 2013 345 MPD User Manual

6) Source: 32-bit immediate value (decimal or hexadecimal) or a 32-bit MPL data. Destination: 2
consecutive memory locations indicated through a pointer variable. The memory locations can be of 3
types: RAM for data (dm), RAM for MPL programs (pm), EEPROM SPI-connected for MPL programs
(spi). The pointer variable indicates first of the 2 memory locations. If the pointer variable is followed by a
+ sign, after the assignment, it is incremented by 2. The source can be either a long or a fixed MPL data.

 p_var = 0x4500; // set 0x4500 in pointer variable p_var

 (p_var),spi = 200000; // write 200000 in the EEPROM memory location 0x4500

 (p_var+),spi = var1; // write var1 value in the EEPROM memory location

// 0x4500, then set p_var = 0x4502

 p_var = 0x8200; // set 0x8200 in pointer variable p_var

 (p_var),pm = 3.5; // write value 3.5 in RAM memory location 0x8200 for

// MPL programs

 (p_var+),pm = var1; // write var1 value in RAM memory location 0x8200 for

// MPL programs, then set p_var = 0x8202

 p_var = 0xA00; // set 0xA00 in pointer variable p_var

 (p_var),dm = -1L; // write –1 (0xFFFFFFFF) in the RAM memory location

// 0xA00

 (p_var+),dm = var1; // write var1 value in the RAM data memory location

// 0xA00, then set p_var = 0xA02

When this operation is performed having as source an immediate value, the MPL compiler checks the
type and the dimension of the immediate value and based on this generates the binary code for a 16-bit
or a 32-bit data transfer. Therefore if the immediate value has a decimal point, it is automatically
considered as a fixed value. If the immediate value is outside the 16-bit integer range (-32768 to +32767),
it is automatically considered as a long value. However, if the immediate value is inside the integer range,
in order to execute a 32-bit data transfer it is necessary to add the suffix L after the value, for example:
200L or –1L.

Examples:

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var),dm = 1000000; // write 1000000 (0xF4240) in the CPOS parameter i.e

// 0x4240 at address 0x29E and 0xF at address 0x29F

(user_var+),dm = -1; // write -1 (0xFFFF) in CPOS(L). CPOS(H) remains

// unchanged. CPOS is (0xFFFFF) i.e. 1048575,

// and user_var is incremented by 2

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var+),dm = -1L; // write –1L long value (0xFFFFFFFF) in CPOS i.e.

// CPOS(L) = 0xFFFF and CPOS(H) = 0xFFFF,

// user_var is incremented by 2

user_var = 0x2A0; // write CSPD address in pointer variable user_var

(user_var),dm = 1.5; // write 1.5 (0x18000) in the CSPD parameter i.e

© ElectroCraft 2013 346 MPD User Manual

// 0x8000 at address 0x2A0 and 0x1 at address 0x2A1

Remark: The MPL assignment instructions with source an immediate value or a MPL data and
destination a MPL data, use a short address format for the destination. The short address format
requires a destination address between 0x200 and 0x3FF or between 0x800 and 0x9FF. This restriction
is respected now by all the predefined or user-defined MPL data, hence you can use the above
assignment instructions without checking the variables addresses.

However, considering possible future developments, the MPL also includes assignment instructions using
a full address format where the destination address can be any 32-bit value. The following commands
support full addressing:

 long_var,dm = 100000; // set long_var = 100000 in using full addressing

 long_var,dm = 0x100000; // set long_var = 0x100000 using full addressing

 var_dest,dm = var_source; // copy value of var_source in var_dest using

// full addressing

See also:
Assignment and Data Transfer. 16-bit data – MPL Programming Details
MPL Description

6.2.3.5. Arithmetic and logic manipulation

The MPL offers the possibility to perform the following operations with the MPL data:

• Addition

• Subtraction

• Multiplication

• Division

• Left and right shift

• logic AND / OR

Except the multiplication, the result of these operations is saved in the left operand. For the multiplication,
the result is saved in the dedicated product register. The operands are always treated as signed numbers
and the right shift is performed with sign-extension.

Addition: The right-side operand is added to the left-side operand

The left side operand can be:

• A 16-bit MPL data: MPL parameter or user variable

• A 32-bit MPL data: MPL parameter or user variable

The right side operand can be:

• A 16-bit immediate value

• A 16-bit MPL data: MPL parameter, variable or user variable

• A 32-bit immediate value, if the left side operand is a 32-bit MPL data

© ElectroCraft 2013 347 MPD User Manual

• A 32-bit MPL data: MPL parameter, variable or user variable, if the left side operand is a 32-bit
data too

Programming Examples

 int_var += 10; // int_var1 = int_var1 + 10

 int_var += int_var2; // int_var = int_var + int_var2

 long_var += -100; // long_var = long_var + (-100) = long_var – 100

 long_var += long_var2; // long_var = long_var + long_var2

 fixed_var += 10.; // fixed_var = fixed_var + 10.0

 fixed_var += fixed_var2; // fixed_var = fixed_var + fixed_var2

Subtraction: The right-side operand is subtracted from the left-side operand

The left side operand can be:

• A 16-bit MPL data: MPL parameter or user variable

• A 32-bit MPL data: MPL parameter or user variable

The right side operand can be:

• A 16-bit immediate value

• A 16-bit MPL data: MPL parameter, variable or user variable

• A 32-bit immediate value, if the left side operand is a 32-bit MPL data

• A 32-bit MPL data: MPL parameter, variable or user variable, if the left side operand is a 32-bit
data too

Programming Examples

 int_var -= 10; // int_var1 = int_var1 - 10

 int_var -= int_var2; // int_var = int_var - int_var2

 long_var -= -100; // long_var = long_var - (-100) = long_var + 100

 long_var -= long_var2; // long_var = long_var - long_var2

 fixed_var -= 10.; // fixed_var = fixed_var - 10.0

 fixed_var -= fixed_var2; // fixed_var = fixed_var - fixed_var2

Remark: At addition and subtraction, when the left operand is a 32-bit long or fixed MPL data and the
right operand is a 16-bit integer value, it is treated as follows:

• Sign extended to a 32-bit long value, if the left operand is a 32-bit long

• Set as the integer part of a fixed value, if the left operand is a 32-bit fixed

Multiplication: The 2 operands are multiplied and the result is saved in a dedicated 48-bit product
register (PREG). This can be accessed via the MPL variables: PRODH – the 32 most significant bits, and
PROD – the 32 least significant bits of the product register. The result of the multiplication can be left or
right-shifted with 0 to 15 bits, before being stored in the product register. At right shifts, high order bits are
sign-extended and the low order bits are lost. At left shifts, high order bits are lost and the low order bits
are zeroed. The result is preserved in the product register until the next multiplication.

© ElectroCraft 2013 348 MPD User Manual

The first (left) operand can be:

• A 16-bit MPL data: MPL parameter, variable or user variable

• A 32-bit MPL data: MPL parameter, variable or user variable

The second (right) operand can be:

• A 16-bit immediate value

• A 16-bit MPL data: MPL parameter, variable or user variable

Remark: The result is placed in the product register function of the left operand. When shift is 0:

• In the 32 least significant bits, when the left operand is a 16-bit integer. The result is a 32-bit long
integer

• In all the 48 bits, when the left operand is a 32-bit fixed. The result has the integer part in the 32
most significant bits and the fractional part in the 16 least significant bits

• In all the 48 bits, when the left operand is a 32-bit long. The result is a 48-bit integer

Programming Examples

long_var * -200 << 0; // PROD = long_var * (-200)

fixed_var * 10 << 5; // PROD = fixed_var * 10 * 25 i.e. fixed_var *320

int_var1 * int_var2 >> 1; // PROD = (int_var1 * int_var2) / 2

long_var * int_var >> 2; // PROD = (long_var * int_var) / 4

long_var = PROD; // save 32LSB of PROD in long_var

long_var = PROD(H); // save 32MSB of PROD in long_var i.e. bits 47-15

Division: The left operand – the dividend, is divided by the right operand – the divisor, and the result is
saved in the left operand..

The first (left) operand is a 32-bit MPL data: MPL parameter or user variable.

The second (right) operand is a 16-bit MPL data: MPL parameter, variable or user variable

The result, saved in the first operand is a fixed value with the integer part in the 16 most significant bits
and the fractional part in the 16 least significant bits.

Programming Examples

long_var /= int_var; // long_var = long_var / int_var

fixed_var /= int_var; // fixed_var = fixed_var / int_var

Left and right shift: The operand is left or right shifted with 0 to 15. The result is saved in the same
operand. At right shifts, high order bits are sign-extended and the low order bits are lost. At left shifts,
high order bits are lost and the low order bits are zeroed.

The operand can be:

• A 16-bit MPL data: MPL parameter, variable or user variable

• A 32-bit MPL data: MPL parameter, variable or user variable

© ElectroCraft 2013 349 MPD User Manual

• The 48-bit product register with the result of the last multiplication

© ElectroCraft 2013 350 MPD User Manual

Programming Examples

long_var << 3; // long_var = long_var * 8

int_var = -16; // int_var = -16 (0xFFF0)

int_var >> 3; // int_var = int_var / 8 = -2 (0xFFFE)

PROD << 1; // PREG = PREG * 2

Remark: The shifts instructions having PROD as operand are performed on all the 48-bits of the product
register.

Logic AND / OR: A logic AND is performed between the operand and a 16-bit data (the AND mask),
followed by a logic OR between the result and another 16-bit data (the OR mask).

The operand is a 16-bit MPL data: MPL register, MPL parameter or user variable

The AND and OR masks are 16-bit immediate values, decimal or hexadecimal.

Programming Examples

int_var = 13; // int_var = 13 (0xD)

SRB int_var, 0xFFFE, 0x2;// set int_var bit 0 = 0 and bit 1 = 1

 // int_var = 12 (0xC)

The SRB instruction allows you to set/reset bits in a MPL data in a safe way avoiding the interference
with the other concurrent processes wanting to change the same MPL data. This is particularly useful for
the MPL registers, which have bits that can be manipulated by both the drive/motor and the user at MPL
level.

Remark: The SRB instruction, use a short address format for the operand. The short address format
requires an operand address between 0x200 and 0x3FF or between 0x800 and 0x9FF. This restriction is
respected now by all the predefined or user-defined MPL data, hence you can use the above assignment
instructions without checking the variables addresses.

However, considering possible future developments, the MPL also includes a similar instruction SRBL
using a full address format where the operand address can be any 16-bit value. The SRBL command
has the following mnemonic:

SRBL MPLvar, 0xFFFE, 0x2; // set bit 0 = 0 and bit 1 = 1 in MPLvar with

// using full addressing

See also:

MPL Description

© ElectroCraft 2013 351 MPD User Manual

6.2.3.6. Multi-axis control

6.2.3.6.1. Axis identification

In multiple-axis configurations, each axis (drive/motor) needs to be identified through a unique number –
the axis ID. This is a value between 1 and 255. If the destination of a message is specified via an axis ID,
the message is received only by the axis with the same axis ID. The axis ID is initially set at power on
using the following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data.

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default axis ID
value which is 255.

Remark: If the axis ID read from a valid setup table is 0, the axis ID is set with the value read from the
hardware switches/jumpers or in their absence according with d)

Typically, the axis ID is kept constant during operation at the value established during the setup phase.
However, if needed, you can change the axis ID to any of the 255 possible values, using the MPL
instruction AXISID, followed by an integer value between 1 and 255.

Apart from the axis ID, each drive has also a group ID. The group ID represents a filter for multicast
messages. The destination of a multicast message is specified via a group ID. When a multicast
message is received, each axis compares the group ID from the message with its own group ID. If the
axis group ID has a bit in common with the group ID from the message, the message is accepted. The
group ID is an 8-bit integer value. Each bit corresponds to one group: bit 0 – group 1, bit 1 – group 2… bit
7 – group 8. Hence a drive/motor can be programmed to be member of up to 8 groups. When a MPL
command is sent to a group, all the axes members of this group will receive the command. For example,
if a drive/motor has the group ID = 11 (1011b), it is member of groups 1, 2 and 4 and will receive the
messages sent any of these groups.

For each drive/motor you can:

• Set its group ID using the MPL instruction GROUPID

• Add new groups to its group ID using the MPL instruction ADDGRID

• Remove groups from its group ID using the MPL instruction REMGRID.

Remarks:

• You can read at any moment the actual values of the axis ID and group ID of a drive/motor from
the Axis Address Register AAR

• By default all the drives are set as members of group 1.

• A broadcast to all the axes means to send a message with the destination group ID = 0

Variables

AAR MPL register (Axis Address Register). Contains the Group ID in the 8MSB and
the Axis ID in the 8LSB

© ElectroCraft 2013 352 MPD User Manual

Instructions

AXISID value Set axis ID = value. Value is an 8-bit integer between 1 and 255

GROUPID (1,3,5,..) Set group ID = value. Value is an 8-bit integer, where:

• Bit 0 is set to 1, if (group) 1 occurs in the parenthesis, else it is set to 0

• Bit 1 is set to 1, if (group) 2 occurs in the parenthesis, else it is set to 0

• …

• Bit 7 is set to 1, if (group) 8 occurs in the parenthesis, else it is set to 0

ADDGRID (2,4,6…) Add the groups from parenthesis to the Group ID. The corresponding bits from
Group ID will be set to 1

REMGRID (2,5…) Remove the groups from parenthesis from the Group ID. The corresponding bits
from Group ID will be set to 0

Programming Example

AXISID 10; // set axis ID = 10

GROUPID (2,3); // set group ID = 6 (110b) i.e. bits 1, 2 = 1

ADDGRID (4); // add group 4. Group ID = 14 (1110b) i.e. bits 1, 2, 3 = 1

REMGRID (2,4); // remove groups 2 and 4. Group ID = 4 (100b) i.e. bit 2 = 1

// AAR = 40Ah i.e. group ID = 4 and axis ID = 10 (Ah)

See also:

Communication Protocols – RS232 & RS485

Communication Protocols – CAN

MPL Description

6.2.3.6.2. Data transfers between axes

There are 2 categories of data transfer operations between axes:

1. Read data from a remote axis. A variable or a memory location from the remote axis is saved into
a local variable

2. Write data to a remote axis or group of axes. A variable or a memory location of a remote axis or
group of axes is written with the value of a local variable

In a read data from a remote axis operation:

• The source is placed on a remote axis and can be:

� A 16-bit MPL data: MPL register, parameter, variable or user variable

� A memory location indicated through a pointer variable

• The destination is placed on the local axis and can be:

� A 16-bit MPL data: MPL register, parameter or user variable

© ElectroCraft 2013 353 MPD User Manual

Programming Examples

1) Source: remote 16-bit MPL data, Destination: local 16-bit MPL data.

 local_var = [2]remote_var; // set local_var with value of remote_var from axis 2

Remark: If remote_var is a user variable, it has to be declared in the local axis too. Moreover, for correct
operation, remote_var must have the same address in both axes, which means that it must be declared
on each axis on the same position. Typically, when working with data transfers between axes, it is
advisable to establish a block of user variables that may be the source, destination or pointer of data
transfers, and to declare these data on all the axes as the first user variables. This way you can be sure
that these variables have the same address on all the axes.

2) Source: remote memory location pointed by a remote pointer variable, Destination: 16-bit MPL data.
The remote memory location can be of 3 types: RAM memory for MPL data (dm), RAM memory for MPL
programs (pm), EEPROM SPI-connected memory for MPL programs (spi). If the pointer variable is
followed by a + sign, after the assignment, the pointer variable is incremented by 1 if the destination is a
16-bit integer or by 2 if the destination is a 32-bit long or fixed

local_var = [2](p_var),spi; // local_var = value of EEPROM program memory

// location from axis 2, pointed by p_var from axis 2

long_var = [3](p_var+),dm; // local long_var = value of RAM data memory

// locations from axis 3, pointed by p_var from axis 3

// p_var is incremented by 2

int_var = [4](p_var+),pm; // local int_var = value of RAM program memory

// location from axis 4, pointed by p_var from axis 4;

// p_var is incremented by 1

Remark: The MPL instructions for data transfers between axes use a short address format for the
remote source when this is a MPL data. The short address format requires a source address between
0x200 and 0x3FF or between 0x800 and 0x9FF. This restriction is respected now by all the predefined or
user-defined MPL data, hence you can use the above assignment instructions without checking the
variables addresses.

However, considering possible future developments, the MPL also includes data transfers using a full
address format where the source address can be any 16-bit value. The following command supports full
addressing:

 local_var = [2]remote_var,dm; // set local_var with value of remote_var

// from axis 2 using extended addressing

In a write data to a remote axis or group of axes operation:

• The source is placed on the local drive and can be:

� A 16-bit MPL data: MPL register, parameter, variable or user variable

• The destination is placed on the remote axis or group of axes and can be:

� A 16-bit MPL data: MPL register, parameter or user variable

� A memory location indicated through a pointer variable

Programming Examples

© ElectroCraft 2013 354 MPD User Manual

1) Source: local 16-bit MPL data, Destination: remote 16-bit MPL data.

[2]remote_var = local_var; // set remote_var from axis 2 with local_var value

[G2]remote_var = local_var; // set remote_var from group 2 with local_var value

[B]remote_var = local_var; // set remote_var from all axes with local_var value

 // broadcast with group ID = 0 -> got by everyone

2) Source: 16-bit MPL data, Destination: remote memory location pointed by a remote pointer variable.
The remote memory location can be of 3 types: RAM memory (dm), RAM memory for MPL programs
(pm), EEPROM SPI-connected memory for MPL programs (spi). If the pointer variable is followed by a +
sign, after the assignment, the pointer variable is incremented by 1 if the source is a 16-bit integer or by 2
if the source is a 32-bit long or fixed

[2](p_var),spi = local_var; // set local_var value in EEPROM program memory

 // location from axis 2, pointed by p_var from axis 2

[G3](p_var+),dm = long_var; // set local long_var value in RAM data memory

 // location from group 3 of axes, each location being

// pointed its own p_var, which is incremented by 2

[4](p_var+),pm = int_var; // set local int_var value in RAM program memory

 // location from axis 4, pointed by p_var from axis 4;

// p_var is incremented by 1

Remark: The MPL instructions for data transfers between axes use a short address format for the
remote destination when this is a MPL data. The short address format requires a destination address
between 0x200 and 0x3FF or between 0x800 and 0x9FF. This restriction is respected now by all the
predefined or user-defined MPL data, hence you can use the above assignment instructions without
checking the variables addresses.

However, considering possible future developments, the MPL also includes data transfers using a full
address format where the destination address can be any 16-bit value. The following command supports
full addressing:

[G2]remote_var,dm = local_var; // set remote_var from group 2 with

// local_var value, using extended addressing

See also:

MPL Description

© ElectroCraft 2013 355 MPD User Manual

6.2.3.6.3. Remote control

The MPL includes powerful instructions through which you can program a drive to issue MPL commands
to another drive or group of drives. You can include these instructions in the MPL program of a drive,
which can act like a host and can effectively control the operation of the other drives from the network.
These MPL instructions are:

[axis]{MPL command1; MPL command2;…};

[group]{MPL command1; MPL command2;…};

[broadcast]{MPL command1; MPL command2;…};

where MPL command1, MPL command2, etc. can be any single axis MPL instructions. A single axis MPL
instruction is defined as an instruction that does not transfer data or sends MPL commands to other axes.
If you include multiple MPL commands separated by semicolon (;), these will be sent one by one in order
from left to right i.e. first MPL command1, then MPL command2, etc.

Remark: Most of the MPL instructions enter in the category of those that can be sent by a drive/motor to
another one using the above MPL commands.

Programming Examples

[G1]{CPOS=2000;}; // send a new CPOS command to all axes from group 1

[G1]{UPD}; // send an update command to all the axes from group 1

// all axes from group 1 will start to move simultaneously

[B]{STOP;}; // broadcast a STOP command to all axes from the network

See also:

MPL Description

© ElectroCraft 2013 356 MPD User Manual

6.2.3.6.4. Axis Synchronization

The MPL provides a synchronization procedure between the ElectroCraft drives/motors connected in a
CAN network. When the synchronization procedure is active, the execution of the control loops is
synchronized within a 10 time interval. Due to this powerful feature, drifts between the drives/motors are
eliminated.

The synchronization process is performed in two steps. First, the synchronization master sends a
synchronization message to all axes, including to itself. When this message is received, all the axes read
their own internal time. Next, the master sends its internal time to all the synchronization slaves, which
compare it with their own internal time. If there are differences, the slaves correct slightly their sampling
periods in order to keep them synchronized with those of the master.

A drive/motor becomes the synchronization master when it receives the MPL command SETSYNC value
where value represents the time interval in internal units between the synchronization messages sent by
the synchronization master. Recommended value is 20ms.

6.2.3.7. Monitoring

6.2.3.7.1. Position Triggers

A position trigger is a position value with which the actual position is continuously compared. The
compare result is shown in the Status Register High (SRH). If the actual position is below a position
trigger, the corresponding bit from SRH is set to 0, else it is set to 1.

In total there are 4 position triggers. Their status is shown in SRH bits 4 to 1. The position triggers are set
in the following MPL parameters:

POSTRIGG1 – for Position Trigger 1

POSTRIGG2 – for Position Trigger 1

POSTRIGG3 – for Position Trigger 1

POSTRIGG4 – for Position Trigger 1

You can change at any moment the value of a position trigger.

© ElectroCraft 2013 357 MPD User Manual

The actual position that is compared with the position triggers is:

• The Load position feedback (MPL variable APOS_LD) for configurations with position sensor

• The position reference (MPL variable TPOS – Target position) in the case of steppers controlled in
open-loop

Remark: The position triggers can be used to monitor the motion progress. If this operation is done from
a host, you may program the drive/motor to automatically issue a message towards the host, each time
when the status of a position trigger is changed.

See also:

Position Triggers – Related MPL Instructions and Data

MPL Description

© ElectroCraft 2013 358 MPD User Manual

6.2.3.7.2. Position Triggers - Related MPL Instructions and Data

Parameters

POSTRIGG1 Position trigger 1. Measured in position units.

POSTRIGG2 Position trigger 2. Measured in position units.

POSTRIGG3 Position trigger 3. Measured in position units.

POSTRIGG4 Position trigger 4. Measured in position units.

Variables

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

TPOS Target position – position reference computed by the reference generator at each
slow loop sampling period. Measured in position units

Programming Example
// Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

POSTRIGG1 = 2000;//Set First Position Trigger = 1[rot]

See also:

Position Triggers – MPL Programming Details

MPL Description

6.2.3.7.3. Status Register

The drive/motor status condition is described in registers SRH and SRL.

See also:

Status register low part – SRL

Status register high part – SRH

MPL Description

© ElectroCraft 2013 359 MPD User Manual

6.2.3.7.4. FAULT Status

A drive/motor enters in the FAULT status, when an error occurs. In the FAULT status:

• The drive/motor is in AXISOFF with the control loops and the power stage deactivated

• The MPL program execution is stopped

• The error register MER shows the type of errors detected and the status register SRH.15 signals
the fault condition

• Ready and error outputs (if present) are set to the not ready level, respectively to the error active
level. When available, ready green led is turned off and error red led is turned on

Remark: The following conditions signaled in MER do not set the drive/motor in fault status:

• Drive /motor disabled due to the enable input set on the disable level

• Command error

• Negative limit switch input on active level

• Positive limit switch input on active level

• Position wraparound

• Serial and CAN bus communication errors

You can modify this default behavior by changing the MPL interrupt service routines

The drive/motor can be got out from the FAULT status, with the MPL command FAULTR – fault reset.
This command clears most of the error bits from MER, sets the ready output (if available) to the ready
level, and sets the error output (if available) to the no error level.

Remarks:

• The FAULTR command does not change the status of MER.15 (enable input on disabled level),
MER.7 (negative limit switch input active), MER.6 (positive limit switch input active) and MER.2
(invalid setup table)

• The drive/motor will return to FAULT status if there are errors when the FAULTR command is
executed

See also:

MPL Description

© ElectroCraft 2013 360 MPD User Manual

6.2.3.7.5. Messages sent to the host

You can program a drive/motor to send messages to your host. The messages are all of type “Take Data
2” (see Communication Protocols: RS232 & RS485 or CAN) i.e. return the value of a MPL data, like if the
drive/motor would have had received a “Give Me Data 2” request from the host to return that MPL data.

The message transmission can be triggered by:

• Conditions which change the status registers SRL, SRH or the error register MER

• The execution of the MPL command SEND from your MPL program. Through this command you can
send to your host the contents of any MPL data

In the first case, you can select the registers bits, which will trigger a message when are changed. The
selection is done via 3 masks, one for each register, set in MPL parameters: SRL_MASK, SRH_MASK,
MER_MASK. A bit set in a mask, enables a message transmission when the same bit from the
corresponding register changes.

When the transmission is triggered by a bit change in SRH (high part) or SRL (low part), the message
sent contains these 2 registers grouped together as a single 32-bit register/data, with SRH on bits 31-16.
When the transmission is triggered by a bit change in MER, the message sent contains this register.

The host ID is specified via the MPL parameter MASTERID. This contains the host ID (an integer value
between 1 and 255), multiplied by 16, plus 1. For example, if the host ID is 1, the value of MASTERID
must be 1 *16 + 1 = 17.

Remark: By default, at power on, the MASTERID is set for a host ID equal with the drive/motor axis ID.
Therefore, the messages will be sent via RS-232 serial communication. If the host ID is set different from
the drive/motor axis ID, the messages are sent via the other communication channels: CAN bus, RS485,
etc

Parameters

MASTERID Provides the host ID (address), according with formula:

MASTERID = host ID * 16 + 1

SRL_MASK Mask for SRL register. A bit set to 1, enables to send SRH and SRL when the
same bit from SRL changes

SRH_MASK Mask for SRH register. A bit set to 1, enables to send SRH and SRL when the
same bit from SRH changes

MER_MASK Mask for MER register. A bit set to 1, enables to send MER when the same bit
from MER changes

Variables

SRL MPL register. Low part of the 32-bit status register grouping key information about the drive/motor
status

SRH MPL register. High part of the 32-bit status register grouping key information concerning the
drive/motor status

MER MPL register. Groups all the errors conditions

© ElectroCraft 2013 361 MPD User Manual

Instructions

SEND var Sends a “Take Data 2” message with var contents. Var can be any 16-bit or 32-bit MPL
data: register, parameter or variable

Programming Examples

MASTERID = 33; // Set host ID / address = 2

//Send SRH & SRL if motion complete or pos. trigger 1 bits change

SRH_MASK = 0x0002;

SRL_MASK = 0x0400;

MER_MASK = 0xFFFF; // send MER on any bit change

SEND CAPPOS; // Send to host contents of variable CAPPOS

See also:

Communication Protocols – RS232 & RS485

Communication Protocols – CAN

MPL Description

© ElectroC

This categ

FAULTR

SAVE S
m
do

SCIBR va

ex

Craft 2013

6.2.3.8.

gory includes

aves the act
memory, in th

one, after the

alue16

xchanges on

Miscellan

 the following

Fault reset
when an e
MER are c
the Error ou

Remarks:

• The FA
input o
(positiv

• The dr
FAULT

tual values o
e setup table

e power on ini

Changes th

RS232 or RS

The serial b

a. With th

b. If the s
table

c. If there

Remarks:

• Use thi
on star
commu
this cas

• An alte
desired
After a
setup ta
if the se
stored i

36

eous

g MPL instruct

. Gets out th
error occurs.
leared (set to
utput (if prese

AULT reset co
on disabled le
ve limit switch

rive/motor wil
TR command

of the MPL
e. Through th
tialization.

he serial comm

S485

baud rate is s

e value read

setup table is

 is no baud ra

is command
rts to execut

unicate with a
se, the MPL p

ernate solutio
d baud rate an

reset, the d
able was valid
etup table is
in a separate

62

tions:

he drive/moto
After a FAUL
o 0), the Rea
ent) is set to “

ommand doe
evel), MER.7
h input active)

ll return to F
is executed

parameters f
his command

munication in

set at power o

from the EEP

s invalid, with

ate set by a v

when a drive
te the MPL
a host at a ba
program must

n to the abo
nd then to sa

drive/motor st
d. Once set, t
later on disab
area of the E

or from the F
LTR comman

ady output (if
“no error” leve

s not change
7 (negative lim

 and MER.2 (

FAULT status

from the RA
d, you can sa

nterface (SCI)

on using the fo

PROM setup t

h the last bau

valid setup tab

e/motor opera
program from
aud rate diffe
t start with a s

ove case is to
ave it in the EE
tarts directly
the new defau
bled, becaus

EEPROM.

MPD U

AULT status
nd, most of t
present) is s

el.

e the status o
mit switch inp
(invalid setup

s if there are

AM memory i
ave all the s

) baud rate. S

ollowing algo

table

ud rate read

ble, with 9600

ates in AUTO
m the EEPR
erent from th
serial baud ra

o set via SCI
EEPROM, with

with the new
ult baud rate
e the default

User Manual

in which it e
the error bits

set to “ready”

of MER.15 (e
put active), M
p table)

e errors whe

into the EEP
setup modifica

SCI is used in

rithm:

from a valid

0.

ORUN (after p
ROM) and it
he default val
ate change.

IBR comman
h command S
w baud rate,
is preserved,
serial baud r

enters
s from

level,

enable
MER.6

en the

PROM
ations

n data

setup

power
must

lue. In

nd the
SAVE.

if the
, even
rate is

© ElectroCraft 2013 363 MPD User Manual

CANBR value16 Changes the CAN bus baud rate as follows:

The CAN baud rate is set at power on using the following algorithm:

d. With the value read from the EEPROM setup table

e. If the setup table is invalid, with the last baud rate read from a valid setup
table

f. If there is no baud rate set by a valid setup table, with 500kb.

Remarks:

• Use this command when a drive/motor operates in AUTORUN (after power
on starts to execute the MPL program from the EEPROM) and it must
communicate with a host at a baud rate different from the default value. In
this case, the MPL program must start with a CAN baud rate change.

• An alternate solution to the above case is to set via CANBR command the
desired baud rate and then to save it the EEPROM, with command SAVE.
After a reset, the drive/motor starts directly with the new baud rate, if the
setup table was valid. Once set, the new default baud rate is preserved,
even if the setup table is later on disabled, because the default CAN baud
rate is stored in a separate area of the EEPROM

LOCKEEPROM value16 Locks or unlocks the EEPROM write protection. When the EEPROM is write-
protected, it is not possible to write data into the EEPROM, with the
exception of the MPL command SAVE. This command temporary unlocks
the EEPROM, saves the setup data and then locks back the EEPROM.
Value16 may have the following values:

0 – Disables EEPROM write protection

1 – Enables write protection for the last quarter of the EEPROM

2 – Enables write protection for the last half of the EEPROM

3 – Enables write protection for the entire EEPROM

Example: An EEPROM has 8Kwords. In the MPL program space occupies the address range: 4000-
5FFFh. LOCKEEPROM 1 protects the address range: 5800-5FFFh, LOCKEEPROM 2 protects the
address range: 5000-5FFFh and LOCKEEPROM 3 protects the entire address range: 4000-5FFFh.

ENEEPROM Enables EEPROM usage after it was disabled by the initialization of feedback devices
like SSI or EnDat encoders using the same SPI link as the EEPROM

NOP No operation

BEGIN First instruction of a MPL program.

© ElectroCraft 2013 364 MPD User Manual

END Last instruction of the main section of a MPL program. When END instruction is
executed, the MPL program execution is stopped.

Remark: It is mandatory to end the main section of a MPL program with an END
command. All the MPL functions and the MPL interrupt service routines must
follow after the END command.

ENDINIT END of the INITialization part of the MPL program. This command uses the
available setup data to perform key initializations, but does not activate the
controllers or the PWM outputs. These are activated with the AXISON command

Remarks:

• After power on, the ENDINIT command may be executed only once.
Subsequent ENDINIT commands are ignored.

• The first AXISON command must be executed only after the ENDINIT
command

• Typically, the ENDINIT command is executed at the beginning of a MPL
program and may be followed by the AXISON command even if no motion
mode was set. In the absence of any programmed motion, the drive applies
zero voltage to the motor. Alternately, after ENDINIT you can set a first
motion and then execute AXISON

See also:

MPL Description

© ElectroCraft 2013 365 MPD User Manual

6.2.4. MPL Instruction set

6.2.4.1. MPL Instructions

This section describes the complete set of MPL instructions, grouped by functionality. In each group, the
instructions are ordered alphabetically. The groups are:

• Motion programming and control, including

o Motion configuration

o Motor commands

• Program flow (decision) group

o Events

o Motion Controller Events

o Jumps and function calls

o MPL interrupts

• I/O handling (firmware FAxx)

• I/O handling (firmware FBxx)

• Assignment and data transfer

• Arithmetic and logic operations

• Multi axis control and monitoring

• Miscellaneous

• On-line commands

The presentation also lists the Obsolete instructions together with their equivalents.

The description of each MPL instruction includes:

• Syntax

• Operands

• Binary code

• Description

• Example(s)

All the notational conventions used are grouped in the symbols section.

© ElectroCraft 2013 366 MPD User Manual

6.2.4.2. Symbols used in instructions descriptions

Symbol Description

&Label Value of a MPL program label i.e. a MPL program address

&V16 Address of a 16-bit integer variable

&V32 Address of a 32-bit long or fixed variable

(V16) Contents of memory location from address equal with V16 value

(fa) Full full addressing. Source/destination operand provided with 16-bit address.
Some MPL instructions using 9-bit short addressing are doubled with their long
addressing equivalent

9LSB(&V16) The 9 LSB (less significant bits) of the address of a 16-bit integer

9LSB(&V32) The 9 LSB (less significant bits) of the address of a 32-bit long or fixed

A Message destination is an axis indicated via its Axis ID

A/G Message destination can be an axis indicated via an Axis ID or a group of axes
indicated by a Group ID

ANDdis 16-bit AND mask. See Table MCRx & AND/OR masks for DISIO#n and
Table MCRx & PxDIR addresses

ANDen 16-bit AND mask. See Table MCRx & AND/OR masks for ENIO#n and
Table MCRx & PxDIR addresses

ANDin 16-bit AND mask. See Table AND/OR masks for SETIO#n IN

ANDm 16-bit user-defined AND mask

ANDout 16-bit AND mask. See Table AND/OR masks for SETIO#n OUT

ANDrst 16-bit AND mask. See Table AND/OR masks for ROUT#n

ANDset 16-bit AND mask. See Table AND/OR masks for SOUT#n

Bit_mask 16-bit AND mask. See Tables PxDIR & Bit_mask for V16=IN#n and
table MCRx & PxDIR addresses

D_ref 32-bit fixed value

D_time 16-bit value

Flag Condition Flag for GOTO/CALL

LengthMLI Length of a MPL instruction code in words – 1

MCRx See Tables MCRx & AND/OR masks for ENIO#n / DISIO#n and
Table MCRx & PxDIR addresses

ORdis 16-bit OR mask. See Table MCRx & AND/OR masks for DISIO#n and
Table MCRx & PxDIR addresses

ORen 16-bit OR mask. See Table MCRx & AND/OR masks for ENIO#n and
Table MCRx & PxDIR addresses

ORin 16-bit OR mask.. See Table AND/OR masks for SETIO#n IN

ORm 16-bit user-defined OR mask

ORout 16-bit OR mask. See Table AND/OR masks for SETIO#n OUT

ORrst 16-bit OR mask. See Table AND/OR masks for ROUT#n

© ElectroCraft 2013 367 MPD User Manual

ORset 16-bit OR mask. See Table AND/OR masks for SOUT#n

PxDIR See Table PxDIR & Bit_msk for V16=IN#n and Table MCRx & PxDIR addresses

DM RAM memory for MPL data

PM RAM memory for MPL programs

SPI E2ROM memory for MPL programs

TM Type of memory. When used in syntax TM should be replaced by DM or PM or
SPI. When used in code, see Table TM values.

VAR Any 16/32 –bit MPL data i.e.: register, parameter, variable, user-variable

VAR16 Any 16-bit integer MPL data

VAR16D A 16-bit integer MPL parameter or user-variable, used as destination:

VAR16S Any 16-bit integer MPL data used as source

VAR32 Any 32-bit long or fixed MPL data i.e.: parameter, variable, user-variable

VAR32(L) 16LSB of a 32-bit long or fixed variable (seen as a 16-bit integer)

VAR32(H) 16MSB of a 32-bit long or fixed variable (seen as a 16-bit integer)

VAR32D A 32-bit long or fixed MPL parameter of user variable, used as destination

VAR32S Any 32-bit long or fixed MPL data

value16 16-bit integer value

value32 32-bit long or fixed value

value32(L) 16LSB of a 32-bit long or fixed value

value32(H) 16MSB of a 32-bit long or fixed value

© ElectroCraft 2013 368 MPD User Manual

6.2.4.3. Instructions Categories

6.2.4.3.1. Motion configuration

Syntax Description

CIRCLE Define circular segment for vector mode

CPA Command Position is Absolute

CPR Command Position is Relative

EXTREF Set external reference type

INITCAM addrS, addrD Copy CAM table from EEPROM (addrS address) to RAM (addrD address)

LPLANE Define coordinate system for linear interpolation mode

MODE CS Set MODE Cam Slave

MODE GS Set MODE Gear Slave

MODE LI Set MODE Linear Interpolation

MODE PC Set MODE Position Contouring

MODE PE Set MODE Position External

MODE PP Set MODE Position Profile

MODE PSC Set MODE Position S-Curve

MODE PT Set MODE PT

MODE PVT Set MODE PVT

MODE SC Set MODE Speed Contouring

MODE SE Set MODE Speed External

MODE SP Set MODE Speed Profile

MODE TC Set MODE Torque Contouring

MODE TEF Set MODE Torque External Fast

MODE TES Set MODE Torque External Slow

MODE TT Set MODE Torque Test

MODE VC Set MODE Voltage Contouring

MODE VEF Set MODE Voltage External Fast

MODE VES Set MODE Voltage External Slow

MODE VM Set MODE Vector Mode

MODE VT Set MODE Voltage Test

PTP Define a PT point

PVTP Define a PVT point

© ElectroCraft 2013 369 MPD User Manual

REG_OFF Disable superposed mode

REG_ON Enable superposed mode

RGM Reset electronic gearing/camming master mode

SEG Define a contouring segment

SETPT Setup PT mode operation

SETPVT Setup PVT mod operation

SGM Set electronic gearing/camming master mode

TUM0 Target update mode 0

TUM1 Target update mode 1

VPLANE Define coordinate system for Vector Mode

VSEG Define linear segment for vector mode

© ElectroCraft 2013 370 MPD User Manual

6.2.4.3.2. Motor commands

Syntax Description

AXISOFF AXIS is OFF (deactivate control)

AXISON AXIS is ON (activate control)

ENDINIT END of Initialization

RESET RESET drive / motor

SAP Set Actual Position

STA Set Target position = Actual position

STOP STOP motion

STOP! STOP motion when the programmed event occurs

UPD Update motion mode and parameters. Start motion

UPD! Update motion mode and parameters when the programmed event occurs

© ElectroCraft 2013 371 MPD User Manual

6.2.4.3.3. Events

Syntax Description

!ALPO Set event when absolute load position is over a value

!ALPU Set event when absolute load position is under a value

!AMPO Set event when absolute motor position over a value

!AMPU Set event when absolute motor position under a value

!CAP Set event when a capture input goes low or high

!IN#n Set event when digital input #n goes low or high

!LSN Set event when the negative limit switch (LSN) goes low or high

!LSP Set event when positive limit switch (LSP) goes low or high

!LSO Set event when load speed is over a value

!LSU Set event when load speed is under a value

!MC Set event when the actual motion is completed

!MSO Set event when motor speed is over a value

!MSU Set event when motor speed is under a value

!PRO Set event when position reference is over a value

!PRU Set event when position reference is under a value

!RPO Set event when relative load position is over a value

!RPU Set event when relative load position is under a value

!RT Set event after a wait time

!SRO Set event if speed reference is over a value

!SRU Set event if speed reference is under a value

!TRO Set event if torque reference is over a value

!TRU Set event if torque reference is under a value

!VO Set event if a long/fixed variable is over a value

!VU Set event if a long/fixed variable is under a value

WAIT! Wait until the programmed event occurs

© ElectroCraft 2013 372 MPD User Manual

6.2.4.3.4. Jumps and function calls

Syntax Description

ABORT Abort the execution of a function called with CALLS

CALL Call a MPL function

CALLS Cancelable CALL of a MPL function

GOTO Jump

RET Return from a MPL function

6.2.4.3.5. MPL interrupts

Syntax Description

DINT Disable globally all MPL interrupts

EINT Enable globally all MPL interrupts

RETI Return from a MPL Interrupt Service Routine

© ElectroCraft 2013 373 MPD User Manual

6.2.4.3.6. I/O handling (Firmware FAxx)

Syntax Description

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

DISLSN Disable negative limit switch (LSN) input to detect transitions

DISLSP Disable positive limit switch (LSP) input to detect transitions

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high transition

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high transition

ENLSN0 Enable negative limit switch (LSN) input to detect a high to low transition

ENLSN1 Enable negative limit switch (LSN) input to detect a low to high transition

ENLSP0 Enable positive limit switch (LSP) input to detect a low to high transition

ENLSP1 Enable positive limit switch (LSP) input to detect a high to low transition

OUTPORT Set Enable, LSP, LSN and general purpose outputs OUT#28-31

ROUT#n Set low the output line #n

SETIO#n Set IO line #n as input or as output

SOUT#n Set high the output line #n

V16D = IN#n Read input #n. V16D = input #n status

V16D = INPUT1, ANDm V16D = logical AND between inputs IN#25 to IN#32 status and ANDm mask

V16D = INPUT2, ANDm V16D = logical AND between inputs IN#33 to IN#39 status and ANDm mask

V16D = INPORT, ANDm V16D = status of inputs Enable, LSP, LSN plus IN#36 to IN#39

© ElectroCraft 2013 374 MPD User Manual

6.2.4.3.7. I/O handling (firmware FBxx)

Syntax Description

!CAP Set event on capture inputs

!LSN Set event on negative limit switch input

!LSP Set event on positive limit switch input

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

DISLSN Disable negative limit switch (LSN) input to detect transitions

DISLSP Disable positive limit switch (LSP) input to detect transitions

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high transition

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high transition

ENLSN0 Enable negative limit switch (LSN) input to detect a high to low transition

ENLSN1 Enable negative limit switch (LSN) input to detect a low to high transition

ENLSP0 Enable positive limit switch (LSP) input to detect a low to high transition

ENLSP1 Enable positive limit switch (LSP) input to detect a high to low transition

user_var = IN(n) Read input n in the user variable user_var

user_var = IN(n1, n2, n3, …) Read inputs n1, n2, n3,… in the user variable user_var

OUT(n) =value16 Set the output line as specified by value16

OUT(n1, n2, n3, …) =value16 Set the output lines n1 n2, n3 as specified by value16

SetAsInput(n) Set the I/O line #n as an input

SetAsOutput(n) Set the I/O line #n as an output

SRB Set/reset bits from a MPL data

STOP!
Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

UPD!
Update the motion mode and/or the motion parameters when the
programmed event occurs

WAIT!

Wait until the programmed event occurs. If the command is followed by
value16, the wait ends after the time interval specified in this 16-bit integer
value. Value16 is measured in time units

© ElectroCraft 2013 375 MPD User Manual

6.2.4.3.8. Assignment and data transfer

Syntax Description

V16 = label V16 = &label

V16D = V16S V16D = V16S

V16 = val16 V16 = val16

V16D = V32S(H) V16D = V32S(H)

V16D = V32S(L) V16D = V32S(L)

V16D, dm = V16S V16D = V16S (fa)

V16D, dm = val16 V16D = val16 (fa)

V16D = (V16S), TM V16D = (V16S) from TM memory

V16D = (V16S+), TM V16D = (V16S) from TM memory, then V16S += 1

(V16D), TM = V16S (V16D) from TM memory = V16S

(V16D), TM = val16 (V16D) from TM memory = val16

(V16D+), TM = V16S (V16D) from TM memory = V16S, then V16D += 1

(V16D+), TM = val16 (V16D) from TM memory = val16, then V16D += 1

V32(H) = val16 V32(H) = val16

V32(L) = val16 V32(H) = val16

V32D(H) = V16S V32D(H) = V16

V32D(L) = V16S V32D(L) = V16

V16D = -V16S V16D = -V16S

V32D = V32S V32D = V32S

V32 = val32 V32 = val32

V32D =V16S << N V32D = V16S left-shifted by N

V32D, dm = V32S V32D from dm = V32S (fa)

V32D, dm = val32 V32 from dm = val32 (fa)

V32D = (V16S), TM V32D = (V16S) from TM memory

V32D = (V16S+), TM V32D = (V16S) from TM memory, then V16S += 2

(V16D), TM = V32S (V16D) from TM memory = V32S

(V16D), TM = val32 (V16D) from TM memory = val32

(V16D+), TM = V32S (V16D) from TM memory = V32S, then V16D += 2

(V16D+), TM = val32 (V16D) from TM memory = val32, then V16D += 2

V32D = -V32S V32D = -V32S

© ElectroCraft 2013 376 MPD User Manual

6.2.4.3.9. Arithmetic and logic operations

Syntax Description

V16 += val16 V16 = V16 + val16

V16D += V16S V16D = V16D + V16S

V32 += val32 V32 = V32 + val32

V32D += V32S V32D = V32D + V32S

V16 -= val16 V16 = V16 - val16

V16D -= V16S V16D = V16D - V16S

V32 -= val32 V32 = V32 - val32

V32D -= V32S V32D = V32D - V32S

V16 * val16 << N 48-bit product register = (V16 * val16) >> N

V16 * val16 >> N 48-bit product register = (V16 * val16) >> N

V16A * V16B << N 48-bit product register = (V16A * V16B) << N

V16A * V16B >> N 48-bit product register = (V16A * V16B) >> N

V32 * V16 << N 48-bit product register = (V32 * V16) << N

V32 * V16 >> N 48-bit product register = (V32 * V16) >> N

V32 * val16 << N 48-bit product register = (V32 * val16) << N

V32 * val16 >> N 48-bit product register = (V32 * val16) >> N

V32=/V16 Divide V32 to V16

PROD <<= N Left shift 48-bit product register by N

V16 <<= N Left shift V16 by N

V32 <<= N Left shift V32 by N

PROD >>= N Right shift 48-bit product register by N

V16 >>= N Right shift V16 by N

V32 >>= N Right shift V32 by N

SRB V16, ANDm, ORm Set / Reset Bits from V16

SRBL V16, ANDm, ORm Set / Reset Bits from V16 (fa)

6.2.4.3.10. Multiple axis control and monitoring

Syntax Description

[A/G] { MPL Instr} Send MPL instruction to [A/G]

[A/G] V16D = V16S [A/G] V16D = local V16S

© ElectroCraft 2013 377 MPD User Manual

[A/G] V16D, dm = V16S [A/G] V16D = local V16S (fa)

[A/G] (V16D), TM = V16S [A/G] (V16D), TM = local V16S

[A/G] (V16D+), TM = V16S [A/G] (V16D), TM = local V16S, then V16D += 1

[A/G] V32D = V32S [A/G] V32D = local V32S

[A/G] V32D, dm = V32S [A/G] V32D = local V32S (fa)

[A/G] (V16D), TM = V32S [A/G] (V16D), TM = local V32S

[A/G] (V16D+), TM = V32S [A/G] (V16D), TM = local V32S, then V16D += 2

V16D = [A] V16S Local V16D = [A] V16S

V16D = [A] V16S, dm Local V16D = [A] V16S, dm (fa)

V16D = [A] (V16S), TM Local V16D = [A] (V16S), dm

V16D = [A] (V16S+), TM Local V16D = [A] (V16S), dm, then V16S += 1

V32D = [A] V32S Local V32D = [A] V32S

V32D = [A] V32S, dm Local V32D = [A] V32S, dm (fa)

V32D = [A] (V16S), TM Local V32D = [A] (V16S), TM

V32D = [A] (V16S+), TM Local V32D = [A] (V16S), TM, then V16S += 2

ADDGRID (value16_1, value16_2,…) Add groups to the Group ID

AXISID Set Axis ID

GROUPID (value16_1, value16_2,…) Set GROUP ID

SETSYNC Enable/disable synchronization between axes

SEND Send to host the contents of a MPL variable

REMGRID (value16_1, value16_2,…) Remove groups from the Group ID

© ElectroCraft 2013 378 MPD User Manual

6.2.4.3.11. Miscellaneous

Syntax Description

BEGIN BEGIN of a MPL program

CANBR val16 Set CAN bus baud rate

CHECKSUM, TM Start, Stop, V16D V16D=Checksum between Start and Stop addresses from TM

ENEEPROM Enables EEPROM usage after it was disabled by the
initialization of SSI or ENDat encoders

END END of a MPL program

ENDINIT END of INITialization part of the MPL program

FAULTR Reset FAULT status. Return to normal operation

LOCKEEPROM Locks or unlocks the EEPROM write protection

NOP No Operation

SAVE Save setup data in the EEPROM memory

SCIBR V16 Set RS-232/Rs485 serial communication interface (SCI) baud
rate

STARTLOG V16 Start the data acquisition

STOPLOG Stop the data acquisition

© ElectroCraft 2013 379 MPD User Manual

6.2.4.3.12. On line commands

Syntax Description

(?)GiveMeData Ask one axis to return a 16/32 bit data from memory

TakeData Answer to GiveMeData request

(??)GiveMeData2 Ask a group of axes to return each a 16/32 bit data from memory

TakeData2 Answer to GiveMeData2 request

GetMPLData Ask one axis to return a MPL data

TakeData Answer to Get MPL Data request

GetVersion Ask one axis the firmware version

TakeVersion Answer to Get version request

Get checksum Ask one axis to return the checksum between 2 addresses from its MPL memory

Take checksum Answer to Get checksum request

PING Ask a group of axes to return their axis ID

PONG Answer to a PING request

GETERROR Get last error reported by slaves

SAVEERROR Save slave error in EEPROM

Remark: The online instructions are intended only for host/master usage and cannot reside in a MPL
program. Therefore their syntax is fictive, its only goal being to identify these commands.

In the Binary Code Viewer you can “emulate” a GiveMeData request for a MPL variable using syntax
?name and a GiveMeData2 request using syntax ??name. In both cases, name is the MPL variable
name.

In the Command interpreter, you can check the value of any MPL data, by sending a GiveMeData
request using the syntax ?name, where name is the MPL data name. The value returned with the
TakeData answer is displayed. Through the command interpreter you may also send a Get checksum
request using the syntax: CHECKSUM Start_address, Stop_address. The value returned with Take
checksum is displayed.

© ElectroCraft 2013 380 MPD User Manual

6.2.4.3.13. Obsolete Instructions

The obsolete instructions listed below have been replaced with or included as functionality in other MPL
commands. The obsolete instructions may still be used with their syntax (except the ADDGRID,
GROUPID and REMGRID commands), but in this case you can’t benefit from the extended functionalities
of their equivalents.

Obsolete syntax Replace syntax Remarks

ADDGRID value16 ADDGRID (value_1, value_2,…) The binary code is identical; the syntax was changed to
allow setting adding more than one group. The old syntax
is no more supported

 DISIO#n – Not required anymore. All the I/O pins are already set

 ENIO#n – Not required anymore. All the I/O pins are already set

GROUPID value16 GROUPID (value_1, value_2,…) The binary code is identical; the syntax was changed to
allow setting adding more than one group. The old syntax
is no more supported

MODE CS0

MODE CS
MODE CS1

MODE CS2

MODE CS3

MODE GS0

MODE GS
MODE GS1

MODE GS2

MODE GS3

MODE PC0

MODE PC
MODE PC1

MODE PC2

MODE PC3

MODE PE0

MODE PE
MODE PE1

MODE PE2

MODE PE3

MODE PP0

MODE PP
MODE PP1

MODE PP2

MODE PP3

MODE PPD0 – It is seen as a particular case of electronic gearing

© ElectroCraft 2013 381 MPD User Manual

MODE PPD1

MODE PPD2

MODE PPD3

MODE SC0
MODE SC –

MODE SC1

MODE SE0
MODE SE –

MODE SE1

MODE SP0
MODE SP –

MODE SP1

MODE SPD0
–

MODE SPD1

RAOU – Handled automatically

REMGRID value16 REMGRID(value_1, value_2,…) The binary code is identical; the syntax was changed to
allow setting adding more than one group. The old syntax
is no more supported

SAOU – Handled automatically

SPIBR V16 – Handled automatically

STOP0

STOP –
STOP1

STOP2

STOP3

STOP1!

STOP! –
STOP2!

STOP3!

STOP3!

© ElectroC

6

Syntax

!ALPO va

!ALPO VA

Operands

Binary co

Descripti

Executio

Craft 2013

.2.5. Instru

6.2

alue32

AR32

s VAR32

value3

ode

on Sets th
value
can do

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
respec
occurr

uctions desc

2.5.1.1.

2: long variab

32: 32-bit long

he event con
or the value

o the following

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the mon
ctively VAR32
ed.

38

criptions

!ALPO Set

! if Ab

! if Ab

ble

g immediate v

ndition when
of the specif

g actions:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

nitoring of th
2. This oper

82

t event whe

bsoluteLoadP

bsoluteLoadP

value

the load abso
fied variable.

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

he event, w
ration erases

en absolute

PositionOver

PositionOver

olute position
After you ha

parameters

with command

with comman

sed when the

u need to wa
m will continue

when load a
s a previous

MPD U

load positi

value32

VAR32

n is equal or
ave programm

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

absolute pos
s programme

User Manual

on >

over the spe
med an even

event occurs,

rs or if the tim

programmed
ext instruction

ition >= val
ed event tha

ecified
t, you

, with

meout

event
ns that

lue32,
at has

© ElectroCraft 2013 383 MPD User Manual

Example

//Stop motion when load position >= 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

!ALPO 6000; //Set event: when load absolute position is >= 3 rev

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!ALPU va

!ALPU VA

Operands

Binary co

Descripti

Executio

Example

//

Craft 2013

6.2

alue32

AR32

s VAR32

value3

ode

on Sets th
value
can do

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
respec
occurr

/Change sp

2.5.1.2.

2: long variab

32: 32-bit long

he event con
or the value

o the following

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the mon
ctively VAR32
ed.

peed comman

38

!ALPU Set

! if Ab

! if Ab

ble

g immediate v

dition when t
of the specif

g actions:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

nitoring of th
2. This oper

nd when lo

84

t event whe

bsoluteLoadP

bsoluteLoadP

value

the load abso
fied variable.

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

he event, w
ration erases

oad absolut

en absolute

PositionUnde

PositionUnde

olute position
After you ha

parameters

with command

with comman

sed when the

u need to wa
m will continue

when load a
s a previous

te positio

MPD U

load positi

r value32

r VAR32

is equal or u
ave programm

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

absolute pos
s programme

on is <= 10

User Manual

on <

under the spe
med an even

event occurs,

rs or if the tim

programmed
ext instruction

ition <= val
ed event tha

0 rev

ecified
t, you

, with

meout

event
ns that

lue32,
at has

© ElectroCraft 2013 385 MPD User Manual

//Position feedback: 500 lines encoder (2000 counts/rev)

!ALPU 20000;//Set event: when load absolute position is <= 10 rev

CSPD = 13.3333;//new slew speed command = 500[rpm]

UPD!; //execute on event

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!AMPO v

!AMPO V

Operands

Binary co

Descripti

Executio

Example

Craft 2013

6.2

value32

VAR32

s VAR32

value3

ode

on Sets th
value
can do

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
respec
occurr

2.5.1.3.

2: long variab

32: 32-bit long

he event con
or the value

o the following

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the mon
ctively VAR32
ed.

38

!AMPO Se

! if Ab

! if Ab

ble

g immediate v

dition when t
of the specif

g actions:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

nitoring of th
2. This oper

86

et event whe

bsoluteMotor

bsoluteMotor

value

the motor abs
fied variable.

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

he event, wh
ration erases

en absolute

rPositionOver

rPositionOver

solute positio
After you ha

parameters

with command

with comman

sed when the

u need to wa
m will continue

hen motor a
s a previous

MPD U

e motor pos

r value32

r VAR32

on is equal or
ave programm

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

absolute pos
s programme

User Manual

sition >

over the spe
med an even

event occurs,

rs or if the tim

programmed
xt instruction

sition >= val
ed event tha

ecified
t, you

, with

meout

event
ns that

lue32,
at has

© ElectroCraft 2013 387 MPD User Manual

//Reverse when motor position >= 1rev

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.1591; //acceleration rate = 500[rad/s^2]

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; // set trapezoidal speed profile mode

UPD; //execute immediate

CSPD = -40; //jog speed = -1200[rpm]

!AMPO 2000; // Set event: when motor absolute position >= 1 rot

WAIT!; //Wait until the event occurs

UPD; //Update. Speed command is reversed

Remark: You can activate a new motion on a programmed event in 2 ways:

• Set UPD! command then wait the event with WAIT!. This will activate the new motion
immediately when the event occurs

• Wait the event with WAIT!, then update the motion with UPD. This will activate the
new motion with a slight delay compared with the first option

© ElectroC

Syntax

!AMPU va

!AMPU V

Operands

Binary co

Descripti

Executio

Example

Craft 2013

6.2

alue32

VAR32

s VAR32

value3

ode

on Sets th
value
can do

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
respec
occurr

2.5.1.4.

2: long variab

32: 32-bit long

he event cond
or the value

o the following

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the mon
ctively VAR32
ed.

38

!AMPU Se

! if Ab

! if Ab

ble

g immediate v

dition when th
of the specif

g actions:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

nitoring of th
2. This oper

88

t event whe

bsoluteMotor

bsoluteMotor

value

he motor abs
fied variable.

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

he event, wh
ration erases

en absolute

rPositionUnde

rPositionUnde

olute position
After you ha

parameters

with command

with comman

sed when the

u need to wa
m will continue

hen motor a
s a previous

MPD U

e load posit

er value32

er VAR32

n is equal or u
ave programm

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

absolute pos
s programme

User Manual

ion <=

under the spe
med an even

event occurs,

rs or if the tim

programmed
ext instruction

sition <= val
ed event tha

ecified
t, you

, with

meout

event
ns that

lue32,
at has

© ElectroCraft 2013 389 MPD User Manual

//Stop when motor position <= -3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.1591; //acceleration rate = 500[rad/s^2]

CSPD =-40; //jog speed = 1200[rpm]

MODE SP;

UPD; //execute immediate

!AMPU -6000;// Set event: when motor position is < -3rev

STOP!; //Stop when the event occurs

WAIT!; //Wait until the event occurs

© ElectroC

Syntax

!CAP

Operands

Binary co

Descripti

Executio

Example

//

Craft 2013

6.2

s –

ode

on Sets th
inputs
When

• Mo
exc
ins

• Ma
MP
enc

The se
in CAP
motor
configu

After y

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
high to
progra

/Stop moti

2.5.1.5.

he event cond
. Typically, o
the programm

otor position A
cept the case
tead

aster position
PL variable C
coder on the

election betwe
PPOS2 only

and forese
urations, the

you have prog

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monit
o low) occur

ammed event

ion on next

39

!CAP Set e

! if CA

dition when th
on the capture
med transition

APOS_MT is
e of open-loo

APOS2 or lo
CAPPOS2, ex

load, when lo

een master a
for the setup
e a transm
master positio

grammed an e

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

toring of the
rs on the sel
that has occu

t encoder

90

event when

APture trigger

he programm
e inputs are
n occurs on e

captured and
op systems, w

oad position A
xcept the cas
oad position is

nd load posit
p configuration
ission ratio
on is saved in

event, you ca

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

event, when
lected captur
urred.

index

n function o

red

med transition
connected th

either of these

d memorized
where referen

APOS_LD is
se of stepper
s captured in

tion is done a
ns which use
between the

n CAPPOS2

an do the follo

parameters

with command

with comman

sed when the

u need to wa
m will continue

n the program
re input. This

MPD U

f capture in

occurs on on
he 1st and 2
e inputs, the f

d in the MPL v
nce position

captured and
rs controlled
CAPPOS.

s follows: loa
e different se
em. For all

owing actions

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

mmed transiti
s operation e

User Manual

nput

ne of the 2 ca
nd encoder i

following happ

variable CAP
TPOS is cap

d memorized
open loop w

ad position is s
nsors for loa

the other

:

event occurs,

rs or if the tim

programmed
ext instruction

on (low to hi
erases a pre

apture
index.
pens:

PPOS,
ptured

in the
ith an

saved
d and
setup

, with

meout

event
ns that

igh or
evious

© ElectroCraft 2013 391 MPD User Manual

ENCAPI1; //Enable 1st capture input for low->high transitions

!CAP; // Set event on 1st capture (low->high transition)

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

© ElectroC

Syntax

!IN#n 0

!IN#n 1

Operands

Binary co

Descripti

Executio

Example

//

!I

//

Craft 2013

6.2

s n: inpu

ode

on Sets t
conditi
progra

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
respec
occurr

/ Start mo

IN#36 1; /

/Position

2.5.1.6.

ut line number

the event co
ion of the inp

ammed an eve

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes monitorin
ctively 1 (!IN#
ed.

otion when

// set even

profile. P

39

!IN Set eve

! if Inp

! if Inp

r (0<=n<=39)

ondition when
put #n is tes
ent, you can d

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

ng of the ev
#n 1). This o

digital i

nt when in

Position f

92

ent when fu

put#n is 0

put#n is 1

)

n the digital
sted at each
do the followi

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

vent when th
peration eras

input #36 i

nput #36 is

feedback: 5

unction of d

input #n be
slow loop sa

ing actions:

parameters

with command

with comman

sed when the

u need to wa
m will continue

he digital inp
ses a previou

is high

s high

500-lines

MPD U

digital input

ecomes 0, re
ampling perio

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

put #n beco
us programm

encoder

User Manual

espectively 1
od. After you

event occurs,

rs or if the tim

programmed
ext instruction

omes 0 (!IN#
med event tha

. The
have

, with

meout

event
ns that

#n 0),
at has

© ElectroCraft 2013 393 MPD User Manual

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!LSN

Operands

Binary co

Descripti

Executio

Example

//

//

CA

CS

MO

UP

EN

!L

WA

!M

WA

Craft 2013

6.2

s –

ode

on Sets t
switch

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
limit sw

/Reverse w

/Position

ACC = 0.06

SPD = -16.

ODE SP;

PD;

NLSN1;//En

LSN; //Se

AIT!;//Wai

MC; // li

AIT!;// wa

// mo

2.5.1.7.

he event con
 input. After y

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes monitoring
witch input. Th

when negati

feedback:

637; //a

.6667; //j

 //e

nable negat

et event on

it until th

imit switch

ait until t

otion comma

39

!LSN Set e

! if Lim

ndition when
you have prog

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

g of the even
his operation

ive limit

500 lines

acceleratio

jog speed =

execute imm

tive limit

n negative

he event o

h is activ

the motor

ands are a

94

event when

mitSwitchNeg

the program
grammed an e

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

nt when the p
erases a pre

switch is

s encoder (

on rate =

= -500[rpm

mediate

t switch fo

e limit swi

occurs

ve -> quick

stops beca

accepted

function of

gative active

mmed transitio
event, you ca

parameters

with command

with comman

sed when the

u need to wa
m will continue

rogrammed t
evious program

reached

(2000 coun

200[rad/s^

m]

or low->hi

itch(low->

k stop mod

ause only

MPD U

f LSN input

on occurs at
an do the follo

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

transition occ
mmed event t

nts/rev)

^2]

igh transit

>high trans

de active

then the n

User Manual

t

the negative
owing actions

event occurs,

rs or if the tim

programmed
ext instruction

urs at the neg
that has occu

tions

sition)

new

e limit
s:

, with

meout

event
ns that

gative
urred.

© ElectroCraft 2013 395 MPD User Manual

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

© ElectroC

Syntax

!LSP

Operands

Binary co

Descripti

Executio

Example

//

//

CA

CS

MO

UP

EN

!L

WA

!M

WA

Craft 2013

6.2

s –

ode

on Sets t
switch

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
limit sw

/Reverse w

/Position

ACC = 0.06

SPD = 16.6

ODE SP;

PD;

NLSP1;//En

LSP; //Se

AIT!;//Wai

MC; // li

AIT!;// wa

// mo

2.5.1.8.

he event con
 input. After y

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes monitorin
witch input. Th

when positi

feedback:

637; //a

6667; //j

 //e

nable posit

et event on

it until th

imit switch

ait until t

otion comma

39

!LSP Set e

! if Lim

ndition when
you have prog

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

g of the even
his operation

ive limit

500 lines

acceleratio

jog speed =

execute imm

tive limit

n positive

he event o

h is activ

the motor

ands are a

96

event when

mitSwitchPos

the program
grammed an e

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

nt when the p
erases a pre

switch is

s encoder (

on rate =

= 500[rpm]

mediate

t switch fo

e limit swi

occurs

ve -> quick

stops beca

accepted

function of

sitive active

mmed transiti
event, you ca

parameters

with command

with comman

sed when the

u need to wa
m will continue

programmed t
evious program

reached

(2000 coun

200[rad/s^

or low->hi

itch(low->

k stop mod

ause only

MPD U

f LSP input

ion occurs a
an do the follo

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

transition occ
mmed event t

nts/rev)

^2]

igh transit

>high trans

de active

then the n

User Manual

t the positive
owing actions

event occurs,

rs or if the tim

programmed
ext instruction

curs at the po
that has occu

tions

sition)

new

e limit
s:

, with

meout

event
ns that

ositive
urred.

© ElectroCraft 2013 397 MPD User Manual

CSPD = -40; //jog speed = -1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

© ElectroC

Syntax

!MC

Operands

Binary co

Descripti

Executio

Example

//

//

PO

TO

SR

CA

CS

CP

CP

Craft 2013

6.2

s –

ode

on Sets th
set in t

• Du

�

�

• Du

The m
update

Remar
positio
indepe

n Activate
erases

/Execute s

/ Position

OSOKLIM =

ONPOSOK =

RB UPGRADE

ACC = 0.31

SPD = 100;

POS = 2000

PR; //posi

2.5.1.9.

he event con
the following

uring position

 If UPGRAD
(commande
by POSOK

 If UPGRAD
(commande

uring speed c

motion compl
e command –

rk: In case o
oning is alway
endently of the

es monitoring
a previous pr

successive

n feedback:

10; //Set

10; //Set

E, 0xFFFF,

183;//accel

;//slew spe

00;//positi

ition comma

39

!MC Set ev

!(set e

ndition when
conditions:

 control:

DE.11=1, whe
ed position) a

KLIM, for a pre

DE.11=0, whe
ed position)

control, when

ete condition
– UPD is exec

of steppers c
ys set when
e UPGRADE

g of the even
rogrammed e

position

: 500 line

settle ba

stabilize

0x0800; /

leration r

eed = 3000

ion comman

and is rel

98

vent when m

event) if Motio

the actual m

en the positio
and the positio
eset stabilize

en the positio

the speed ref

n is reset wh
cuted.

controlled op
the position

E.11 status.

nt when the
event that has

profiles

es encoder

and to 0.00

e time to 0

// motion c

rate = 1000

0[rpm]

nd = 10[rot

lative

motion com

onComplete

otion is comp

on reference
on error rema
time interval

on reference

ference arrive

hen a new m

pen-loop, the
n reference a

actual motio
s occurred.

(2000 cou

05[rot]

0.01[s]

complete w

0[rad/s^2]

t]

MPD U

mplete

pleted. The m

arrives at the
ains inside a s
defined by TO

arrives at the

es at the com

motion is sta

motion comp
arrives at the

n is complete

unts/rev)

with settle

User Manual

motion compl

e position to
settle band de
ONPOSOK

e position to

mmanded spee

rted i.e. whe

plete conditio
e position to

ed. This ope

e band

lete is

reach
efined

reach

ed

en the

on for
reach

eration

© ElectroCraft 2013 399 MPD User Manual

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; // set event and wait for motion complete

... // start here next move

© ElectroC

Syntax

!PRO valu

!PRO VA

Operands

Binary co

Descripti

Executio

Example:

//

Craft 2013

6.2

ue32

R32

s VAR32

value3

ode

on Sets th
or the
the fol

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
VAR32

:

/Stop moti

2.5.1.10.

2: long variab

32: 32-bit long

he event cond
value of the
lowing action

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monit
2. This operat

ion when po

40

!PRO Set e

! if Po

! if Po

ble

g immediate v

dition when t
specified var
s:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

toring of the
tion erases a

osition re

00

event when

ositionReferen

ositionReferen

value

he position re
riable. After y

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

event, when
previous pro

eference >=

n position re

nceOver valu

nceOver VAR

eference is eq
you have prog

parameters

with command

with comman

sed when the

u need to wa
m will continue

position refe
grammed eve

= 3 rev

MPD U

eference >

ue32

R32

qual or over t
grammed an

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

erence >= val
ent that has o

User Manual

the specified
event, you c

event occurs,

rs or if the tim

programmed
xt instruction

lue32, respec
occurred.

value
an do

, with

meout

event
ns that

ctively

© ElectroCraft 2013 401 MPD User Manual

//Position feedback: 500 lines encoder (2000 counts/rev)

!PRO 6000; //Set event: when motor position reference is >= 3 rev

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!PRU valu

!PRU VAR

Operands

Binary co

Descripti

Executio

Example:

//

Craft 2013

6.2

ue32

R32

s VAR32

value3

ode

on Sets th
or the
the fol

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
VAR32

:

/Stop moti

2.5.1.11.

2: long variab

32: 32-bit long

he event cond
value of the
lowing action

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monit
2. This operat

ion when po

40

!PRU Set e

! if PositionR

! if PositionR

ble

g immediate v

dition when th
specified var
s:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

toring of the
tion erases a

osition re

02

event when

ReferenceUnd

ReferenceUnd

value

he position re
riable. After y

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

event, when
previous pro

eference >=

n position re

der value32

der VAR32

ference is eq
you have prog

parameters

with command

with comman

sed when the

u need to wa
m will continue

position refe
grammed eve

= 3 rev

MPD U

eference <

qual or under
grammed an

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

erence <= val
ent that has o

User Manual

the specified
event, you c

event occurs,

rs or if the tim

programmed
xt instruction

lue32, respec
occurred.

value
an do

, with

meout

event
ns that

ctively

© ElectroCraft 2013 403 MPD User Manual

//Position feedback: 500 lines encoder (2000 counts/rev)

!PRU 6000; //Set event: when position reference is >= 3 rev

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!SRO valu

!SRO VA

Operands

Binary co

Descripti

Executio

Example:

//

Craft 2013

6.2

ue32

R32

s VAR32

value3

ode

on Sets th
the va
followi

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
VAR32

:

/Stop moti

2.5.1.12.

2: fixed variab

32: 32-bit fixed

he event cond
lue of the spe
ng actions:

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monit
2. This operat

ion when sp

40

!SRO Set e

! if Sp

! if Sp

ble

d immediate v

dition when th
ecified variab

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

toring of the
tion erases a

peed refer

04

event when

peedReferenc

peedReferenc

value

he speed refe
ble. After you

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

event, when
previous pro

rence >= 31

n speed refe

ceOver value

ceOver VAR3

erence is equ
have program

parameters

with command

with comman

sed when the

u need to wa
m will continue

n speed refer
grammed eve

15 rpm

MPD U

erence >

32

32

al or over the
mmed an eve

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

rence >= val
ent that has o

User Manual

e specified va
ent, you can d

event occurs,

rs or if the tim

programmed
xt instruction

ue32, respec
occurred.

alue or
do the

, with

meout

event
ns that

ctively

© ElectroCraft 2013 405 MPD User Manual

//Position feedback: 500 lines encoder (2000 counts/rev)

!SRO 10.5; //Set event: when speed reference is >= 315 rpm

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!SRU valu

!SRU VAR

Operands

Binary co

Descripti

Executio

Example:

//

Craft 2013

6.2

ue32

R32

s VAR32

value3

ode

on Sets th
or the
the fol

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
VAR32

:

/Motor is

2.5.1.13.

2: fixed variab

32: 32-bit fixed

he event con
value of the
lowing action

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monit
2. This operat

decelerati

40

!SRU Set e

! if Sp

! if Sp

ble

d immediate v

dition when t
specified var
s:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

toring of the
tion erases a

ing. Start

06

event when

peedReferenc

peedReferenc

value

he speed refe
riable. After y

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

event, when
previous pro

t a positio

n speed refe

ceUnder valu

ceUnder VAR

ference is equ
you have prog

parameters

with command

with comman

sed when the

u need to wa
m will continue

n speed refer
grammed eve

on profile

MPD U

erence <=

ue32

R32

ual or under t
grammed an

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

rence <= val
ent that has o

e when spee

User Manual

the specified
event, you c

event occurs,

rs or if the tim

programmed
xt instruction

ue32, respec
occurred.

ed

value
an do

, with

meout

event
ns that

ctively

© ElectroCraft 2013 407 MPD User Manual

//reference < 600 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

!SRU 20; //Set event: when position reference is <= 3 rev

// prepare new motion mode

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!TRO valu

!TRO VAR

Operands

Binary co

Descripti

Executio

Example:

Craft 2013

6.2

ue32

R32

s VAR32

value3

ode

on Sets th
value
can do

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
respec
occurr

:

2.5.1.14.

2: fixed variab

32: 32-bit fixed

he event cond
or the value

o the following

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the mon
ctively VAR32
ed.

40

!TRO Set e

! if To

! if To

ble

d immediate v

dition when th
of the specif

g actions:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

nitoring of th
2. This oper

08

event when

orqueReferen

orqueReferen

value

he current/tor
fied variable.

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

he event, wh
ration erases

n torque refe

nceOver value

nceOver VAR3

rque referenc
After you ha

parameters

with command

with comman

sed when the

u need to wa
m will continue

hen current/t
s a previous

MPD U

erence >=

e32

32

ce is equal or
ave programm

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

torque refere
s programme

User Manual

r over the spe
med an even

event occurs,

rs or if the tim

programmed
ext instruction

ence >= val
ed event tha

ecified
t, you

, with

meout

event
ns that

lue32,
at has

© ElectroCraft 2013 409 MPD User Manual

// Motor will reach a hard stop. Disable control when torque

// reference > 1 A = 1984 internal current units

!TRO 1984.0; // set event when torque reference > 1 A

WAIT!;//Wait until the event occurs

AXISOFF; // disable control

© ElectroC

Syntax

!TRU valu

!TRU VAR

Operands

Binary co

Descripti

Executio

Example

Craft 2013

6.2

ue32

R32

s VAR32

value3

ode

on Sets t
specifi
event,

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
respec
occurr

2.5.1.15.

2: fixed variab

32: 32-bit fixed

the event co
ied value or
you can do t

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the mon
ctively VAR32
ed.

41

!TRU Set e

! if To

! if To

ble

d immediate v

ondition whe
the value of
he following a

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

nitoring of th
2. This oper

0

event when

orqueReferen

orqueReferen

value

n the curren
the specified

actions:

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

he event, wh
ration erases

 torque refe

nceUnder valu

nceUnder VAR

nt/torque refe
d variable. A

parameters

with command

with comman

sed when the

u need to wa
m will continue

hen current/t
s a previous

MPD U

erence <=

ue32

R32

erence is eq
After you hav

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

torque refere
s programme

User Manual

qual or unde
ve programme

event occurs,

rs or if the tim

programmed
ext instruction

ence <= val
ed event tha

er the
ed an

, with

meout

event
ns that

lue32,
at has

© ElectroCraft 2013 411 MPD User Manual

// Disable control when torque reference > 1 A = 1984 IU

!TRO 1984.0; // set event when torque reference > 1 A

WAIT!;//Wait until the event occurs

AXISOFF; // disable control

© ElectroC

Syntax

!RPO valu

!RPO VA

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

ue32

R32

s VAR32

value3

ode

on Sets t
value o
from th

Rema
functio
POS0=

After y

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
VAR32

2.5.1.16.

2: long variab

32: 32-bit long

he event con
or the value o
he beginning

rk: The orig
on of the ta
=APOS_LD.

you have prog

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monito
2. This operat

41

!RPO Set e

! if Re

! if Re

ble

g immediate v

ndition when
of the specifie
of the actual

gin for the rel
rget update

grammed an e

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

oring of the e
tion erases a

2

event when

elativePositio

elativePositio

value

the load rela
ed variable. T
movement.

lative position
mode. Unde

event, you ca

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

vent, when lo
previous pro

n relative loa

onOver value3

onOver VAR3

ative position
The relative po

n measureme
der TUM1, P

an do the follo

parameters

with command

with comman

sed when the

u need to wa
m will continue

oad relative p
grammed eve

MPD U

ad/motor po

32

32

n is equal or
osition is the

ent (MPL vari
POS0 = TPO

owing actions

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

osition >= va
ent that has o

User Manual

osition >

over the spe
load displace

riable POS0)
OS. Under T

:

event occurs,

rs or if the tim

programmed
ext instruction

lue32, respec
occurred.

ecified
ement

is set
TUM0,

, with

meout

event
ns that

ctively

© ElectroCraft 2013 413 MPD User Manual

Example

//Stop motion when after moving 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

!RPO 6000; //Set event: when load relative position is >= 3 rev

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!RPU valu

!RPU VAR

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

ue32

R32

s VAR32

value3

ode

on Sets th
value o
from th

Rema
functio
POS0=

After y

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
VAR32

2.5.1.17.

2: long variab

32: 32-bit long

he event con
or the value o
he beginning

rk: The orig
on of the ta
=APOS_LD.

you have prog

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monito
2. This operat

41

!RPU Set e

! if Re

! if Re

ble

g immediate v

ndition when t
of the specifie
of the actual

gin for the rel
rget update

grammed an e

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

oring of the e
tion erases a

4

event when

elativePosition

elativePosition

value

the load relat
ed variable. T
movement.

lative position
mode. Unde

event, you ca

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

vent, when lo
previous pro

n relative loa

nUnder value

nUnder VAR3

tive position
The relative po

n measureme
der TUM1, P

an do the follo

parameters

with command

with comman

sed when the

u need to wa
m will continue

oad relative p
grammed eve

MPD U

ad/motor po

e32

32

is equal or u
osition is the

ent (MPL vari
POS0 = TPO

owing actions

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

osition <= va
ent that has o

User Manual

osition <

under the spe
load displace

riable POS0)
OS. Under T

:

event occurs,

rs or if the tim

programmed
ext instruction

lue32, respec
occurred.

ecified
ement

is set
TUM0,

, with

meout

event
ns that

ctively

© ElectroCraft 2013 415 MPD User Manual

Example

//Move negative and change speed command after 10 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

!RPU 20000;//Set event: when load relative position is <= 10 rev

CSPD = 13.3333;//new slew speed command = 500[rpm]

UPD!; //execute on event

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!RT value

!RT VAR3

Operands

Binary co

Descripti

Executio

Example

//

Craft 2013

6.2

e32

32

s VAR32

value3

ode

on Sets th
the va
formul
increm

TIME0
0. RTI

Rema
initializ
comma

After y
event o
the nex

n Activat
VAR32

/Introduce

2.5.1.18.

2: long variab

32: 32-bit long

he event cond
alue of the s
a: RTIME =

mented by 1 a

0 is the ATIM
ME is update

rk: ATIME a
zation) comm
and

you have prog
occurs, using
xt instructions

tes the monit
2. This operat

 a 100 ms

41

!RT Set ev

! if Re

! if Re

ble

g immediate v

dition when th
specified long

ATIME – TI
t each slow lo

E value when
ed together wi

and RTIME s
mand. Therefo

grammed an
g the MPL com
s that may ov

oring of the e
tion erases a

delay

6

vent after a

elativeTime >

elativeTime >

value

he relative tim
g variable. T
IME0, where
oop sampling

n the wait eve
ith ATIME, at

start ONLY a
ore you shoul

event monito
mmand WAIT
verride the eve

event when s
previous pro

wait time

= value32

= VAR32

me is equal or
The relative t
 ATIME is a

g period and

ent was set. A
t each slow lo

after the exec
ld not set wa

oring you nee
T!. Otherwise
ent monitorin

ystem relativ
grammed eve

MPD U

r greater than
time RTIME
a 32-bit abso

After power o
oop sampling

cution of the
ait events bef

ed to wait unt
e, the program
g.

ve time >= va
ent that has o

User Manual

 the 32-bit va
is computed

olute time co

on, TIME0 is
period.

 ENDINIT (e
fore executin

til the program
m will continue

lue32, respec
occurred.

alue or
d with
unter,

set to

end of
ng this

mmed
e with

ctively

© ElectroCraft 2013 417 MPD User Manual

!RT 100; // set event: After a wait of 100 slow-loop periods

// 1 slow-loop period = 1ms

WAIT!; // wait the event to occur

© ElectroC

Syntax

!MSO val

!MSO VA

Operands

Binary co

Descripti

Executio

Example

//

Craft 2013

6.2

lue32

AR32

s VAR32

value3

ode

on Sets th
value
the fol

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
This op

/Motor is

2.5.1.19.

2: fixed variab

32: 32-bit fixed

he event con
of the specifi
lowing action

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monito
peration eras

accelerati

41

!MSO Set

! if Mo

! if Mo

ble

d immediate v

ndition when t
ied fixed vari
s:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

oring of the e
es a previous

ing. Stop

8

event when

otorSpeedOv

otorSpeedOv

value

the motor sp
able. After yo

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

event when m
s programmed

motion whe

n motor spe

ver value32

ver VAR32

eed is equal
ou have prog

parameters

with command

with comman

sed when the

u need to wa
m will continue

motor speed >
d event that h

en motor

MPD U

eed >=

or over the
grammed an

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

= value32, re
has occurred.

User Manual

32-bit value o
event, you c

event occurs,

rs or if the tim

programmed
ext instruction

espectively VA
.

or the
an do

, with

meout

event
ns that

AR32.

© ElectroCraft 2013 419 MPD User Manual

//speed > 600 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

!MSO 20; //Set event: when motor speed is > 600 rpm

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!MSU val

!MSU VA

Operands

Binary co

Descripti

Executio

Example

//

//

Craft 2013

6.2

lue32

R32

s VAR32

value3

ode

on Sets th
value
the fol

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
This op

/Motor is

/speed < 6

2.5.1.20.

2: fixed variab

32: 32-bit fixed

he event con
of the specifi
lowing action

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monito
peration eras

decelerati

600 rpm

42

!MSU Set e

! if Mo

! if Mo

ble

d immediate v

dition when t
ied fixed vari
s:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

oring of the e
es a previous

ing. Start

20

event when

otorSpeedUn

otorSpeedUn

value

the motor spe
able. After yo

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

event when m
s programmed

t a positio

n motor spe

nder value32

nder VAR32

eed is equal o
ou have prog

parameters

with command

with comman

sed when the

u need to wa
m will continue

motor speed <
d event that h

on profile

MPD U

eed <=

or under the
grammed an

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

= value32, re
has occurred.

e when moto

User Manual

32-bit value o
event, you c

event occurs,

rs or if the tim

programmed
ext instruction

espectively VA
.

or

or the
an do

, with

meout

event
ns that

AR32.

© ElectroCraft 2013 421 MPD User Manual

//Position feedback: 500 lines encoder (2000 counts/rev)

!MSU 20; //Set event: when motor speed is < 600 rpm

// prepare new motion mode

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!LSO valu

!LSO VAR

Operands

Binary co

Descripti

Executio

Example

//

Craft 2013

6.2

ue32

R32

s VAR32

value3

ode

on Sets t
value
the fol

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
This op

/Stop moti

2.5.1.21.

2: fixed variab

32: 32-bit fixed

he event con
of the specifi
lowing action

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monit
peration eras

ion when lo

42

!LSO Set e

! if Lo

! if Lo

ble

d immediate v

ndition when
ied fixed vari
s:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

toring of the e
es a previous

oad speed

22

event when

oadSpeedOve

oadSpeedOve

value

the load spe
able. After yo

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

event when lo
s programmed

> 600 rpm

 load speed

er value32

er VAR32

eed is equal
ou have prog

parameters

with command

with comman

sed when the

u need to wa
m will continue

oad speed >=
d event that h

MPD U

d >

or over the 3
grammed an

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

= value32, re
has occurred.

User Manual

32-bit value o
event, you c

event occurs,

rs or if the tim

programmed
ext instruction

espectively VA
.

or the
an do

, with

meout

event
ns that

AR32.

© ElectroCraft 2013 423 MPD User Manual

//Load Position feedback: 500 lines encoder (2000 counts/rev)

!LSO 20; //Set event: when load speed is > 600 rpm

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!LSU valu

!LSU VAR

Operands

Binary co

Descripti

Executio

Example

//

//

Craft 2013

6.2

ue32

R32

s VAR32

value3

ode

on Sets th
value
the fol

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
This op

/ Start a

/ Load Pos

2.5.1.22.

2: fixed variab

32: 32-bit fixed

he event con
of the specifi
lowing action

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monit
peration eras

position p

sition feed

42

!LSU Set e

! if Lo

! if Lo

ble

d immediate v

ndition when t
ied fixed vari
s:

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

toring of the e
es a previous

profile wh

dback: 500

24

event when

oadSpeedUnd

oadSpeedUnd

value

the load spee
able. After yo

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

event when lo
s programmed

hen load sp

0 lines enc

load speed

der value32

der VAR32

ed is equal o
ou have prog

parameters

with command

with comman

sed when the

u need to wa
m will continue

oad speed <=
d event that h

peed < 600

coder (200

MPD U

d <

or under the
grammed an

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

= value32, re
has occurred.

0 rpm

00 counts/r

User Manual

32-bit value o
event, you c

event occurs,

rs or if the tim

programmed
ext instruction

espectively VA
.

rev)

or the
an do

, with

meout

event
ns that

AR32.

© ElectroCraft 2013 425 MPD User Manual

!LSU 20; //Set event: when motor speed is < 600 rpm

// prepare new motion mode

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

© ElectroC

Syntax

!VO VAR

!VO VAR

Operands

Binary co

Descripti

Executio

Example

Craft 2013

6.2

32A, value32

32A, VAR32B

s VAR32

VAR32

value3

ode

on Sets th
equal
progra

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
VAR32

2.5.1.23.

2

B

2A: fixed or lo

2B: fixed or lo

32: 32-bit fixed

he event cond
or over the s

ammed an eve

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monito
2. This operat

42

!VO Set ev

! if Va

! if Va

ong variable

ong variable

d or long imm

dition when th
specified valu
ent, you can d

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

oring of the e
tion erases a

26

vent when v

ar32AOver va

ar32AOver VA

mediate value

he selected v
ue or the valu
do the followi

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

event when th
previous pro

variable >=

alue32

AR32B

ariable (any 3
ue of another
ing actions:

parameters

with command

with comman

sed when the

u need to wa
m will continue

he selected va
grammed eve

MPD U

32-bit fixed or
r 32-bit variab

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

ariable >= va
ent that has o

User Manual

r long MPL da
ble. After you

event occurs,

rs or if the tim

programmed
ext instruction

lue32, respec
occurred.

ata) is
 have

, with

meout

event
ns that

ctively

© ElectroCraft 2013 427 MPD User Manual

//Wait until master position MREF > 500 counts, then activate

//electronic gearing slave mode

!VO MREF, 500; //Set event when variable MREF is >= 500

GEAR = 1; // gear ratio

GEARMASTER = 1; // Gear ratio denominator

GEARSLAVE = 1; // Gear ratio numerator

EXTREF 2; // read master from 2nd encoder or pulse & dir

MASTERRES = 2000; // master resolution

MODE GS; //Set as slave, position mode

TUM1; //Set Target Update Mode 1

SRB UPGRADE, 0xFFFF, 0x0004;//UPGRADE.2=1 enables CACC limitation

CACC = 0.3183; //Limit maximum acceleration at 1000[rad/s^2]

UPD!; //execute on event

© ElectroC

Syntax

!VU VAR3

!VU VAR3

Operands

Binary co

Descripti

Executio

Example

Craft 2013

6.2

32A, value32

32A, VAR32B

s VAR32

VAR32

value3

ode

on Sets th
equal
progra

• Ch
co

• St

• W

The pr
for the

Remar
occurs
may ov

n Activat
VAR32

2.5.1.24.

2

B

2A: fixed or lo

2B: fixed or lo

32: 32-bit fixed

he event cond
or under the

ammed an eve

hange the m
ommand UPD

op the motion

ait for the pro

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monito
2. This operat

42

!VU Set ev

! if Va

! if Va

ong variable

ong variable

d or long imm

dition when th
specified val
ent, you can d

motion mode
D!

n when the ev

ogrammed ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

oring of the e
tion erases a

28

vent when v

ar32AUnder v

ar32AUnder V

mediate value

he selected v
ue or the valu
do the followi

and/or the

vent occurs, w

ent to occur,

matically eras
.

r STOP! you
the program

ng.

event when th
previous pro

variable <=

value32

VAR32B

ariable (any 3
ue of another
ing actions:

parameters

with command

with comman

sed when the

u need to wa
m will continue

he selected va
grammed eve

MPD U

32-bit fixed or
r 32-bit variab

when the e

d STOP!

nd WAIT!

e event occur

ait until the p
e with the ne

ariable <= va
ent that has o

User Manual

r long MPL da
ble. After you

event occurs,

rs or if the tim

programmed
ext instruction

lue32, respec
occurred.

ata) is
u have

, with

meout

event
ns that

ctively

© ElectroCraft 2013 429 MPD User Manual

//Wait until master position MREF < 500 counts, then activate

//electronic gearing slave mode

!VU MREF, 500; //Set event when variable MREF is <= 500

GEAR = 1; // gear ratio

GEARMASTER = 1; // Gear ratio denominator

GEARSLAVE = 1; // Gear ratio numerator

EXTREF 2; // read master from 2nd encoder or pulse & dir

MASTERRES = 2000; // master resolution

MODE GS; //Set as slave, position mode

TUM1; //Set Target Update Mode 1

SRB UPGRADE, 0xFFFF, 0x0004;//UPGRADE.2=1 enables CACC limitation

CACC = 0.3183; //Limit maximum acceleration at 1000[rad/s^2]

UPD!; //execute on event

© ElectroC

Syntax

Operands

Binary co

Descripti

Craft 2013

6.2

?V

s VAR: 1

Rema
reside
these

In the
GiveM
is disp
GiveM

ode

on Throug
drive/m

•

•

•

The di
– 16-b

In the
GiveM
protoc

The an
Axis ID

Rema
exchan
comm

2.5.1.25.

VAR Ask

– Ans

16/32-bit MPL

rk: The onlin
in a MPL pro

commands.

Command in
MeData reque
played. The s
MeData reque

gh GiveMeD
motor. The re

A MPL dat

A memory

A memory

mension of th
bit, 1 – 32-bit.

expeditor add
MeData reque
col description

nswer to a Gi
D, the addres

rk: The Giv
nges betwee
and must be

43

GiveMeDa

k one axis to

swer to GiveM

L data: registe

ne instruction
ogram. There

nterpreter, yo
est with synta
same syntax
est and a Take

Data comma
quested data

ta from the RA

location from

location from

he requested
The data is id

dress, bit H –
est via seria
n.

iveMeData c
s of the data

veMeData an
en 2 devices
sent to a sing

30

ata/TakeData

return a 16/3

MeData reque

er, parameter

ns are intend
efore their syn

ou can check
ax ?VAR. The

may be used
eData answe

and an exte
 can be:

AM memory f

m the RAM me

m the EEPRO

 data is spec
dentified by it

– the host bit
al RS-232 lin

ommand is a
returned and

nd TakeData
s. In a multi
gle axis. If thi

a

32 bit value fro

est

r, variable or u

ded only for h
yntax is fictive

k the value o
e value return
d in the Bina
er

rnal device

for data (dm)

emory for MP

M SPI-conne

cified in the bi
ts memory ad

– must be se
nk. For deta

a TakeData m
 its value.

a commands
i-axis CAN b
is command

MPD U

om memory

user variable

host/master
e, the only go

of any MPL d
ned with the
ary Code View

can reques

PL programs (

ected memory

inary code th
ddress and typ

et to 1 only if
ails, see seri

message inclu

must be us
bus network,
is sent to a g

User Manual

usage and c
oal being to id

data, by send
TakeData an
wer to “emula

st data from

(pm)

y (spi)

rough the VT
pe:

the host send
ial communic

uding the exp

sed only for
 the GiveMe

group of drive

cannot
dentify

ding a
nswer,
ate” a

m one

T bit: 0

ds the
cation

peditor

r data
eData

es, the

© ElectroCraft 2013 431 MPD User Manual

TakeData answers from different drives will have all the same identifier and therefore
can’t be correctly identified.

© ElectroC

Syntax

Operands

Binary co

Descripti

Craft 2013

6.2

??VAR

–

s VAR: 1

Rema
reside
these

In the
TakeD

ode

on Throug
drives/

•

•

•

The di
– 16-b

The a
exped

2.5.1.26.

R As

An

16/32-bit MPL

rk: The onlin
in a MPL pro

commands.

e Binary Cod
Data2 answer

gh GiveMeDa
/motors, using

A MPL dat

A memory

A memory

mension of th
bit, 1 – 32-bit.

answer to a
itor Axis ID, th

43

GiveMeDa

sk a group of a

nswer to Give

L data: registe

ne instruction
ogram. There

de Viewer y
r with syntax ?

ata2 comman
g a multicast

ta from the RA

location from

location from

he requested
The data is id

GiveMeData
he address of

32

ata2/TakeDa

axes to return

MeData2 req

er, parameter

ns are intend
efore their syn

you can to “
??VAR.

nd an extern
or broadcast

AM memory f

m the RAM me

m the EEPRO

 data is spec
dentified by it

a2 command
f the data retu

ata2

n each a 16/3

quest

r, variable or u

ded only for h
yntax is fictive

“emulate” a

al device can
message. Th

for data (dm)

emory for MP

M SPI-conne

cified in the bi
ts memory ad

d is a Take
urned and its

MPD U

32 bit data fro

user variable

host/master
e, the only go

GiveMeData

n request dat
he requested

PL programs (

ected memory

inary code th
ddress and typ

Data2 mess
 value.

User Manual

m memory

usage and c
oal being to id

a2 request a

ta from a gro
data can be:

(pm)

y (spi)

rough the VT
pe:

age includin

cannot
dentify

and a

oup of

T bit: 0

g the

© ElectroCraft 2013 433 MPD User Manual

Remark: The GiveMeData2 and command can be sent simultaneously to a group of
drives/motors from a CAN bus network. Even if all the axes answer in the same time, the
host will get the TakeData2 answers one by one, prioritized in the ascending order of the
expeditors’ axis ID: axis 1 – highest priority, axis 255 – lowest priority. Hence these
commands allow optimizing bus traffic, by sending for the same data, a single request to
all the drives involved.

© ElectroC

Syntax

Operands

Binary co

Craft 2013

6.2

–

–

s –

Rema
reside
these

ode

Descr
data fr
code t
GetMP
specifi

In the
GetMP
protoc

The a
exped

The G
(regist
TakeM
compa

2.5.1.27.

As

An

rk: The onlin
in a MPL pro

commands.

ription Thro
rom one drive
through the V
PLData instru
ies the addres

expeditor add
PLData requ
col description

nswer to a G
itor Axis ID, th

etMPLData a
ters, paramet
MPLData pro
ared with Give

43

GetMPLDa

sk one axis to

nswer to GetM

ne instruction
ogram. There

ough GetMP
e/motor. The d
VT bit: 0 – 16-
uction uses
ss range:

dress, bit H –
uest via seria
n.

GetMPLData
he address of

and TakeMPL
ters, variable

ovide shorter
eMeData and

34

ata/TakeMP

return a MPL

MPLData requ

ns are intend
efore their syn

LData comm
dimension of
-bit, 1 – 32-bi
a 9-bit shor

– the host bit
al RS-232 lin

a command i
f the MPL dat

LData comma
es). For this t

messages a
d TakeData.

PLData

L data

uest

ded only for h
yntax is fictive

mand an exte
the requeste

it. The MPL d
rt address fo

– must be se
nk. For deta

is a TakeMP
ta returned an

ands are opti
type of data
and occupy l

MPD U

host/master
e, the only go

rnal device c
ed data is spe
data is identif
for the MPL

et to 1 only if
ails, see ser

PLData mess
nd its value.

mized for req
exchanges,

less commun

User Manual

usage and c
oal being to id

can request a
ecified in the b
fied by its add
data. Bit va

the host send
ial communic

sage includin

quests of MPL
GetMPLData

nication band

cannot
dentify

a MPL
binary
dress.

alue X

ds the
cation

ng the

L data
a and
dwidth

© ElectroCraft 2013 435 MPD User Manual

Remark: The GetMPLData and TakeMPLData commands must be used only for data
exchanges between 2 devices. In a multi-axis CAN bus network, the GetMPLData
command must be sent to a single axis. If this command is sent to a group of drives, the
TakeMPLData answers from different drives will have all the same identifier and
therefore can’t be correctly identified.

© ElectroC

Syntax

Operands

Binary co

Descripti

Syntax

Checksu

Operands

Craft 2013

6.2

–

–

s –

Rema
reside
these

ode

on Throug
one dr
the ho
comm

The fir
and A
messa
the firm

Rema
device
single
differe

6.2

m Start, End

s Start: 1

2.5.1.28.

As

An

rk: The onlin
in a MPL pro

commands.

gh GetVersio
rive/motor. In
ost sends the
unication pro

rmware versio
is the firmwa

age including
mware numbe

rk: The GetV
es. In a multi-

axis. If this c
nt drives will

2.5.1.29.

Ask on
from its

Answer

16-bit unsigne

43

GetVersio

sk one axis to

nswer to GetV

ne instruction
ogram. There

on command
 the expedito

e GetVersion
tocol descript

on has the fo
are revision. T

the expedito
er + 1 letter fo

Version and
axis CAN bus

command is s
have all the s

GetChecks

e axis to retu
s MPL memor

r to GetChec

ed integer val

36

n/TakeVers

return the firm

Version reque

ns are intend
efore their syn

an external d
or address, b
n request via
tion.

orm: FxyzA, w
The answer to
r Axis ID and
or the firmwar

TakeVersion
s network, th
sent to a grou
same identifie

sum/TakeC

urn the checks
ry

cksum reques

ue represent

sion

mware versio

est

ded only for h
yntax is fictive

device can req
it H – the ho

a serial RS-2

where xyz is
o a GetVersio
d the ASCII co
re revision.

n commands
e GetMPLDa
up of drives, t
er and therefo

Checksum

sum between

st

ting the check

MPD U

on

host/master
e, the only go

quest the firm
st bit – must

232 link. For

the firmware
on command
ode of 4 char

s must be use
ata command
the TakeVers

ore can’t be co

n Start and St

ksum start ad

User Manual

usage and c
oal being to id

mware version
be set to 1 o
details, see

e number (3 d
d is a TakeVe
racters: 3 dig

ed only betw
d must be sen
sion answers
orrectly identi

top addresse

dress

cannot
dentify

n from
only if
serial

digits)
ersion
gits for

ween 2
nt to a
s from
ified.

s

© ElectroC

Descripti

Syntax

V

V

V

V

V

V

Craft 2013

End: 1

Rema
reside
these

In the
addres

Where
returne

on Throug
saved
autom

In the
GiveM
protoc

The a
exped
locatio

6.2

VAR16D = lab

VAR16D = va

VAR16D = VA

VAR16D = VA

VAR16D = VA

VAR16D, dm

6-bit unsigne

rk: The onlin
in a MPL pro

commands.

e Command
sses by sendi

Checksum

e, Start, End
ed with the Ta

gh GetCheck
in a drive/m

atically functi

expeditor add
MeData reque
col description

answer to a
itor axis ID, a

ons between t

2.5.1.30.
locati

bel

alue16

AR16S

AR32S(L)

AR32S(H)

= value16

43

ed integer valu

ne instruction
ogram. There

interpreter,
ing a GetChe

m Start, End

d represent th
akeChecksu

ksum comma
motor EEPR
on of the star

dress, bit H –
est via seria
n.

GetChecksu
and the check
the start and t

= Assign
ion

se

se

se

se

se

se

37

ue representi

ns are intend
efore their syn

you can ge
ecksum requ

he start and e
um answer, is

and an extern
ROM or RAM
rt and the end

– the host bit
al RS-232 lin

um command
ksum result i.
the end addre

a 16-bit va

et VAR16D to

et VAR16D to

et VAR16D to

et VAR16D to

et VAR16D to

et VAR16D fro

ng the check

ded only for h
yntax is fictive

et a checksu
uest with the s

end addresse
displayed.

nal device can
M memory. T
d addresses.

– must be se
nk. For deta

d is a TakeC
.e. the sum m
esses.

alue to a M

 value of a lab

 value16

 VAR16S val

 VAR32S(L) v

 VAR32S(H)

om dm to valu

MPD U

ksum end add

host/master
e, the only go

um between
syntax:

es for the che

n check the in
The memory

et to 1 only if
ails, see seri

Checksum,
modulo 65536

MPL variabl

bel

ue

value

value

ue16

User Manual

dress

usage and c
oal being to id

2 MPL pro

ecksum. The

ntegrity of the
y type is sel

the host send
ial communic

which return
6 of all the me

le or a mem

cannot
dentify

ogram

value

e data
lected

ds the
cation

ns the
emory

mory

© ElectroC

V

V

V

(

(

(

(

V

V

V

V

Operands

Binary co

Craft 2013

VAR16D, dm

VAR16D = (V

VAR16D = (V

(VAR16D), Ty

(VAR16D), Ty

(VAR16D+), T

(VAR16D+), T

VAR32D(L) =

VAR32D(L) =

VAR32D(H) =

VAR32D(H) =

Legend

s label: 1

value1

VAR16

VAR32

VAR32

Dm: da

TypeM

(VAR1

ode

= VAR16S

VAR16S), Typ

VAR16S+), Ty

ypeMem = va

ypeMem = VA

TypeMem = v

TypeMem = V

= value16

= VAR16S

= value16

= VAR16S

d: D (destinat

16-bit address

16: 16-bit inte

6x: integer va

2x(L): the low

2x(H): the hig

ata memory o

Mem: memory

16x): contents

43

se

peMem se

ypeMem se
VA

alue16 se

AR16S se

value16 se
VA

VAR16S se
VA

se

se

se

se

tion), S (sourc

s of a MPL in

ger immediat

ariable VAR16

w word of VAR

gh word of VA

operand

y operand.

s of variable V

38

et VAR16D fro

et VAR16D to

et VAR16D
AR16S += 1

et &(VAR16D

et &(VAR16D

et &(VAR1
AR16D += 1

et &(VAR16
AR16D += 1

et VAR32D low

et VAR32D (L

et VAR32D hig

et VAR32D (H

ce).

struction labe

te value

6x

R32x long var

AR32x long va

VAR16x, repre

om dm to VAR

 &(VAR16S)

to &(VAR1

D) from TM to

D) from TM to

6D) from T

6D) from TM

w word to val

L) to VAR16 v

gh word to va

H) to VAR16 v

el

riable

ariable

esenting a 16

MPD U

R16S

from TM

6S) from T

value16

VAR16S

TM to value

TM to VAR1

lue16

value

alue16

value

6-bit address

User Manual

TM, then

e16, then

6S, then

of a variable

© ElectroCraft 2013 439 MPD User Manual

© ElectroCraft 2013 440 MPD User Manual

Description Assigns a 16-bit value to a MPL variable or a memory location. The options are:

The destination is 16-bit MPL variable and the source is: a 16-bit immediate value, a
label, 16-bit MPL variable, high or low part of a 32-bit MPL variable or the contents of a
memory location whose address is indicated by a 16-bit MPL variable (a pointer).

The destination is a memory location whose address is indicated by a 16-bit MPL
variable (a pointer) and the source is: a 16-bit immediate value or a 16-bit MPL variable.

The destination is the high or low part of a 32-bit MPL variable and the source is: a 16-bit
immediate value or a 16-bit MPL variable.

If the pointer variable is followed by a + sign, after the assignment, it is incremented by 1.
The memory location can be of 3 types: RAM for data (dm), RAM for MPL programs
(pm), EEPROM SPI-connected for MPL programs (spi).

© ElectroC

Executio

Example1

La

Before in

Label1

Var1

Example2

Before in

Var1

Craft 2013

Some

value X

All pre
instruc
future
where
followe

n Copies

1
int Va

abel1:

...

Var1 =

nstruction

0x1234

x

2
int Va

...

Var1 =

nstruction

x

instructions u

X specifies th

edefined or u
ctions can be
development
the destinatio

ed by “,dm”.

s a 16-bit valu

ar1;

// Label1

= Label1;

ar1;

= 26438;

44

use a 9-bit sh

he destination

ser-defined M
used without

ts, the MPL a
on address c

ue from the so

1 = MPL pro

After i

Label1

Var1

After i

Var1

41

hort address

n address rang

MPL data are
t checking the
lso includes a
an be any 16

ource to the d

ogram addr

nstruction

 0x1234

0x1234

nstruction

26438

for the destin

ge:

e inside these
e variables ad
assignment in
6-bit value. In

destination

ress

MPD U

nation variabl

e address ran
ddresses. How
nstructions us
this case des

User Manual

e. Bit

nges, hence
wever, consid
sing a full add
stination varia

these
dering
dress
able is

© ElectroCraft 2013 442 MPD User Manual

Example3
int Var1, Var2;

...

Var2 = Var1;

Before instruction After instruction

Var2 0x56AB Var2 0x56AB

Var1 x Var1 0x56AB

Example4
int Var1;

long Var3;

...

Var1 = Var3(L);

Before instruction After instruction

Var3 0x56ABCD98 Var3 0x56ABCD98

Var1 x Var1 0xCD98

Example5
int Var1;

long Var3;

....

Var1 = Var3(H);

Before instruction After instruction

Var3 0x56ABCD98 Var3 0x56ABCD98

Var1 x Var1 0x56AB

© ElectroCraft 2013 443 MPD User Manual

Example6
 int Var1;

...

Var1, dm = 3321;

Before instruction After instruction

Var1 x Var1 3321

Example7
int Var1, Var2;

...

Var1, dm = Var2;

Before instruction After instruction

Var1 0x0A01 Var1 0x0A01

Var2 x Var2 0x0A01

Example8
int Var1, pVar2;

...

Var1 = (pVar2), dm;

Before instruction After instruction

pVar2 0x0A01 pVar2 0x0A01

Data memory Data memory

0x0A01 0x1234 0x0A01 0x1234

Var1 x Var1 0x1234

© ElectroCraft 2013 444 MPD User Manual

Example9
int Var1, pVar2;

...

Var1 = (pVar2+), dm;

Before instruction After instruction

pVar2 0x0A01 pVar2 0x0A02

Data memory Data memory

0x0A01 0x1234 0x0A02 0x0014

Var1 x Var1 0x0014

Example10
int pVar1;

...

(pVar1), spi = 0x5422;

Before instruction After instruction

pVar1 0x5100 pVar1 0x5100

SPI data memory SPI data memory

0x1100 x 0x1100 0x5422

 (SPI memory offset is 0x4000,
i.e. SPI addr = var.addr –
0x4000)

© ElectroCraft 2013 445 MPD User Manual

Example11
int pVar1;

...

(pVar1+), spi = 0x5422;

Before instruction After instruction

pVar1 0x5100 pVar1 0x5101

SPI data memory SPI data memory

0x1100 x 0x1100 0x5422

 (SPI memory offset is 0x4000,
i.e. SPI addr = var.addr –
0x4000)

Example12
int pVar1, Var2;

...

(pVar1), pm = Var2;

Before instruction After instruction

pVar1 0x8200 pVar1 0x8200

Var2 0xA987 Var2 0xA987

pm data
memory

 pm data
memory

0x8200 x 0x8200 0xA987

© ElectroCraft 2013 446 MPD User Manual

Example13
int pVar1, Var2;

...

(pVar1+), pm = Var2;

Before instruction After instruction

pVar1 0x8200 pVar1 0x8201

Var2 0xA987 Var2 0xA987

pm data
memory

 pm data
memory

0x8200 x 0x8200 0xA987

Example14
 long Var5;

...

Var5(H) = 0xAA55 ;

Before instruction After instruction

Var5 0x12344321 Var5 0xAA554321

Example15
long Var5;

...

Var5(L) = 0xAA55;

Before instruction After instruction

Var5 0x12344321 Var5 0x1234AA55

© ElectroCraft 2013 447 MPD User Manual

Example16
 int Var1;

long Var5;

...

Var5(H) = Var1;

Before instruction After instruction

Var1 0x7711 Var1 0x7711

Var5 0x12344321 Var5 0x77114321

Example17
int Var1;

long Var5;

...

Var5(L) = Var1;

Before instruction After instruction

Var1 0x7711 Var1 0x7711

Var5 0x12344321 Var5 0x12347711

© ElectroC

Syntax

VAR16D

VAR16D

VAR16D

VAR16D

Operands

Binary co

Craft 2013

6.2

= IN#n

= INPUT1, AN

= INPUT2, AN

= INPORT, A

s
Var16D

IN#n :

INPUT

INPUT

ANDm
inputs

INPOR

ode

2.5.1.31.
with t

NDm

NDm

ANDm

D: integer var

the source is

T1: the source

T2: the source

m: a 16-bit ma
read and the

RT: the source

44

= Read di
their value (

read input #

read inputs
ANDm

read input
ANDm

read Enabl
VAR16D w

riable

s input n (0=<

e is inputs #25

e is inputs #33

ask for filterin
 ANDm mask

e is 7 inputs:

48

igital input(
(Firmware v

#n into VAR1

s IN#25 to

IN#33 to I

le, LSP, LSN
with ANDm

n<=39)

5 to #32

3 to #39

ng the inputs
k

Enable, LSP

(s) and ass
version FAx

6D

IN#32 into V

N#39 into V

N and IN#36

s. A logical A

, LSN, #39, #

MPD U

sign a 16-b
xx)

VAR16D with

VAR16D with

to IN#39 into

AND is perfo

#38, #37 and #

User Manual

bit MPL var

h

h

o

rmed betwee

#36

riable

en the

© ElectroC

Descripti

Executio

Craft 2013

on Read
input is
non-ze
INPUT
0 (low
assign
works
– bit 1

In MPL
inputs
comm

These
specifi

n Read i

digital input(s
s read (IN#n)
ero value whe
T2, each of th
w), 1 – input
ned from bit 0

like INPUT1
5, LSN – bit 1

L the I/O line
and outputs,
on for all the

instructions
ies the destin

nput(s) and s

44

s) and assign
), the destinat
en the input is
he 8LSB of the

is 1 (high) a
0 to 7 in asce
/ INPUT2 exc

14, LSP – bit

es are numbe
 therefore on
products; hen

use a 9-bit s
ation address

set their status

49

n a 16-bit MP
tion variable
s 1 (high). W
e destination
after passing
ending order
cept the bit as
13, #39 – bit

ered: #0 to #
ly a part of th
nce each prod

short addres
s range:

s in reserved

PL variable w
is set to 0 wh

When multiple
variable show
 through the
(IN#25 – bit 0
ssignment in
3, #38 – bit 2

#39. Each pro
he 40 I/O line
duct has its o

ss for the des

bits from the

MPD U

with their valu
hen the input
inputs are re
ws one input

e ANDm mas
0, IN#26 – bi
the destinatio

2, #37 – bit 1,

oduct has a s
s is used. Th

own list of ava

stination varia

e destination

User Manual

ue. When a s
is 0 (low) an
ad with INPU
status: 0 – in

sk. The input
it 1, etc.). INP
on variable: E
#36 – bit 0.

specific numb
e I/O number

ailable I/Os.

able. Bit 9 va

single
d to a

UT1 or
nput is
ts are
PORT

Enable

ber of
ring is

alue X

© ElectroCraft 2013 450 MPD User Manual

Example1
int Var1;

...

Var1 = IN#14;

Before instruction After instruction

IN#14 status 1 IN#14 status 1

Var1 x Var1 0x0040

 Bit#6 of Var1 has logic value
of IN#14. Remaining bits are
set to 0.

Example2
int Var1;

...

Var1 = INPUT1, 0x00E7;

Before instruction After instruction

IN
32 31 30 29 28 27 26 25 IN# 32 31 30 29 28 27 26 25

Sta
tus 0 1 1 0 1 1 0 1 Status 0 1 1 0 1 1 0 1

Va
r1 x Var1 0x0065

IN# 32 31 30 29 28 27 26 25

Bitwise operation
Inputs status 0 1 1 0 1 1 0 1

And_Mask 1 1 1 0 0 1 1 1

Var1 0 1 1 0 0 1 0 1

© ElectroCraft 2013 451 MPD User Manual

Example3
 int Var1;

...

Var1 = INPUT2, 0x00E7;

Before instruction After instruction

IN
39 38 37 36 35 34 33 IN# 39 38 37 36 35 34 33

Sta
tus 1 0 0 1 1 0 1 Status 1 0 0 1 1 0 1

Va
r1 x Var1 0x0085

IN# 39 38 37 36 35 34 33

Bitwise operation
Inputs status 1 0 0 1 1 0 1

And_Mask 1 1 0 0 1 1 1

Var1 1 0 0 0 1 0 1

Example4
int Var1;

...

Var1 = INPORT, 0xE00F;

Before instruction After instruction

IN# Enable LSN LSP 39 38 37 36 IN# Enable LSN LSP 39 38 37 36

status 1 0 1 1 0 1 1 status 1 0 1 1 0 1 1

Var1 X Var1 0xA00B

© ElectroC

Syntax

VAR16D

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

= IN(n1, n2,…

s
Var16D

IN(n1,

ode

on Read
input is
non-ze
each b
is 1 (h

In MPL
inputs

These
specifi

n Read i

2.5.1.32.
with t

…)

D: integer var

n2,…) : the s

The linked image cannot be displayed. Th

digital input(s
s read, IN(n),
ero value whe
bit of the dest
igh).

L the input lin
, therefore on

instructions
ies the destin

nput(s) and s

45

= Read di
their value (

Read input

riable

source inputs

e file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

s) and assign
, the destinati
en the input n
tination variab

nes are numb
nly a part of th

use a 9-bit s
ation address

set their status

52

igital input(
(Firmware v

n1, n2 into V

n1, n2, …

n a 16-bit MP
on variable is

n is 1 (high). W
ble shows on

ered from 0 t
he 15 input lin

short addres
s range:

s in the corre

(s) and ass
version FBx

VAR16D

PL variable w
s set to 0 whe
When multiple
ne input statu

to 15. Each p
nes is used.

ss for the des

sponding bits

MPD U

sign a 16-b
xx)

with their valu
en the input n
e inputs are re
s: 0 – input is

roduct has a

stination varia

s from the des

User Manual

bit MPL var

ue. When a s
n is 0 (low) an
ead, IN(n1, n
s 0 (low), 1 –

specific num

able. Bit 9 va

stination.

riable

single
nd to a
n2,…),
– input

ber of

alue X

© ElectroCraft 2013 453 MPD User Manual

Example1
int Var1;

...

Var1 = IN(4);

Before instruction After instruction

IN(4) status 1 IN(4) status 1

Var1 x Var1 0x0010

 Bit#4 of Var1 has logic value
of IN(4). Remaining bits are
set to 0.

Example1
int Var1;

...

Var1 = IN(4, 9);

Before instruction After instruction

IN(4) status 1 IN(4) status 1

IN(9) status 1 IN(9) status 1

Var1 x Var1 0x0210

 Bit#4 of Var1 has logic value
of IN(4). Bit#9 of Var1 has
logic value of IN(9). Remaining
bits are set to 0.

© ElectroC

Syntax

VAR32D

VAR32D

VAR32D

VAR32D,

VAR32D,

VAR32D

VAR32D

(VAR16D

(VAR16D

(VAR16D

(VAR16D

Operands

Binary co

Craft 2013

6.2

= value32

= VAR32S

= VAR16S <<

 DM = value3

 DM = VAR32

= (VAR16S),

= (VAR16S+)

D), TypeMem

D), TypeMem

D+), TypeMem

D+), TypeMem

s value3

VAR32x

DM: da

TypeMe

(VAR16

ode

2.5.1.33.
locati

s

s

< N s

32 s

2S s

TypeMem s

), TypeMem s
V

= value32 s

= VAR32S s

m = value32 s
V

m = VAR32S s
V

32: 32-bit long

x: long variab

ta memory op

em: memory o

6x): contents

45

= Assign
ion

set VAR32D t

set VAR32D t

set VAR32D t

set long VAR

set long VAR

set VAR32D t

set VAR32D
VAR16S += 2

set &(VAR16

set &(VAR16

set &(VAR
VAR16D += 2

set &(VAR
VAR16D += 2

g immediate v

ble VAR32x

perand

operand. One

of variable VA

54

a 32-bit va

to value32

to VAR32S va

to VAR16S <

32D from DM

32D from DM

to &(VAR16S

D to &(VAR
2

6D) from TM t

6D) from TM t

16D) from
2

16D) from T
2

value

e of dm (0x1)

AR16x, repre

alue to a M

alue

< N

M to value32

M to VAR32S

S) from TM

16S) from

to value32

to VAR32S

TM to value

TM to VAR3

, pm (0x0) or

esenting a 16-

MPD U

MPL variabl

TM, then

e32, then

32S, then

r spi (0x2) val

-bit address o

User Manual

le or a mem

ues

of a variable

mory

© ElectroCraft 2013 455 MPD User Manual

© ElectroC

Descripti

Craft 2013

on Assign

The de
bit MP
consec
(a poin

The de
variab

If the p
The m
(pm), E

Some

value X

All pre
instruc
future
where
followe

ns a 32-bit va

estination is 3
PL variable, a
cutive memor
nter). Left shif

estination is 2
le (a pointer)

pointer variab
memory locati
EEPROM SP

instructions u

X specifies th

edefined or u
ctions can be
development
the destinatio

ed by “,dm”.

45

lue to a MPL

32-bit MPL va
a 16-bit MPL
ry locations w
ft is done with

2 memory loc
and the sour

ble is followed
on can be o
I-connected f

use a 9-bit sh

he destination

ser-defined M
used without

ts, the MPL a
on address c

56

variable or a

ariable and th
variable left

with the lower
h sign extensi

cations with t
rce is: a 32-bit

d by a + sign,
of 3 types: RA
for MPL progr

hort address

n address rang

MPL data are
t checking the
lso includes a
an be any 16

memory loca

he source is:
shifted by 0
r address ind
ion.

the lower add
t immediate v

after the ass
AM for data
rams (spi).

for the destin

ge:

e inside these
e variables ad
assignment in
6-bit value. In

MPD U

ation. The opt

a 32-bit imme
to 16 bits, or
icated by a 1

dress indicate
value or a 32-

signment, it is
(dm), RAM f

nation variabl

e address ran
ddresses. How
nstructions us
this case des

User Manual

tions are:

ediate value,
r the contents
6-bit MPL va

ed by a 16-bit
-bit MPL varia

 incremented
for MPL prog

e. Bit

nges, hence
wever, consid
sing a full add
stination varia

a 32-
s of 2

ariable

t MPL
able.

d by 2.
grams

these
dering
dress
able is

© ElectroCraft 2013 457 MPD User Manual

Execution Copies a 32-bit value from the source to the destination

Example1
long Var1;

...

Var1 = 0x1122AABB;

Before instruction After instruction

Var1 x Var1 0x1122AABB

Example2
long Var1, Var2;

...

Var1 = Var2;

Before instruction After instruction

Var2 0xAABC1234 Var2 0xAABC1234

Var1 x Var1 0xAABC1234

Example3
int Var1;

long Var2;

...

Var2 = Var1 << 4;

Before instruction After instruction

Var1 0x9876 Var1 0x9876

Var2 x Var2 0x00098760

Example4
long Var1;

...

Var1, dm = 0x1122AABB;

© ElectroCraft 2013 458 MPD User Manual

Before instruction After instruction

Var1 x Var1 0x1122AABB

Example5
long Var1, Var2;

...

Var1, dm = Var2;

Before instruction After instruction

Var2 0xAABC1234 Var2 0xAABC1234

Var1 x Var1 0xAABC1234

Example6
long Var1;

int pVar2;

...

Var1 = (pVar2), dm;

Before instruction After instruction

pVar2 0x96AB pVar2 0x96AB

Data memory Data memory

0x96AB 0x1234 0x96AB 0x1234

0x96AC 0xABCD 0x96AC 0xABCD

Var1 x Var1 0xABCD1234

Example7
 long Var1;

int pVar2;

...

Var1 = (pVar2+), dm;

Before instruction After instruction

© ElectroCraft 2013 459 MPD User Manual

pVar2 0x0A02 pVar2 0x0A04

Data memory Data memory

0x0A02 0x1234 0x0A02 0x1234

0x0A03 0xABCD 0x0A03 0xABCD

Var1 x Var1 0xABCD1234

Example8
int pVar1;

...

(pVar1), spi = 0x5422AFCD;

Before instruction After instruction

pVar1 0x5100 pVar1 0x5100

SPI data
memory

 SPI data memory

0x1100 x 0x1100 0xAFCD

0x1101 x 0x1101 0x5422

 (SPI memory offset is 0x4000,
i.e. SPI addr = var.addr –
0x4000)

Example9
int pVar1;

long Var2;

...

(pVar1), pm = Var2;

Before instruction After instruction

pVar1 0x8200 pVar1 0x8200

Var2 0xA98711EF Var2 0xA98711EF

© ElectroCraft 2013 460 MPD User Manual

pm data memory pm data memory

0x8200 x 0x8200 0x11EF

0x8201 x 0x8201 0xA987

Example10
int pVar1;

...

(pVar1+), pm = 0x5422AFCD;

Before instruction After instruction

pVar1 0x8200 pVar1 0x8202

pm data memory pm data memory

0x8200 x 0x8200 0xAFCD

0x8201 x 0x8201 0x5422

Example11
int pVar1;

long Var2;

 ...

(pVar1+), pm = Var2;

Before instruction After instruction

pVar1 0x8200 pVar1 0x8202

Var2 0xA98711E
F

 Var2 0xA98711EF

Pm data
memory

 pm data memory

0x8200 x 0x8200 0x11EF

0x8201 x 0x8201 0xA987

Remark: When destination is 2 consecutive memory locations and the source is an immediate value, the
MPL compiler checks the type and the dimension of the immediate value and based on this generates the

© ElectroCraft 2013 461 MPD User Manual

binary code for a 16-bit or a 32-bit data transfer. Therefore if the immediate value has a decimal point, it
is automatically considered as a fixed value. If the immediate value is outside the 16-bit integer range (-
32768 to +32767), it is automatically considered as a long value. However, if the immediate value is
inside the integer range, in order to execute a 32-bit data transfer it is necessary to add the suffix L after
the value, for example: 200L or –1L.

Examples:

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var),dm = 1000000; // write 1000000 (0xF4240) in the CPOS parameter i.e

// 0x4240 at address 0x29E and 0xF at address 0x29F

(user_var+),dm = -1; // write -1 (0xFFFF) in CPOS(L). CPOS(H) remains

// unchanged. CPOS is (0xFFFFF) i.e. 1048575,

// and user_var is incremented by 2

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var+),dm = -1L; // write –1L long value (0xFFFFFFFF) in CPOS i.e.

// CPOS(L) = 0xFFFF and CPOS(H) = 0xFFFF,

// user_var is incremented by 2

user_var = 0x2A0; // write CSPD address in pointer variable user_var

(user_var),dm = 1.5; // write 1.5 (0x18000) in the CSPD parameter i.e

// 0x8000 at address 0x2A0 and 0x1 at address 0x2A1

© ElectroC

Syntax

VAR16D

VAR16D

VAR16D

VAR16D

Operands

Binary co

Craft 2013

6.2

= [Axis] VAR

= [Axis] VAR

= [Axis] (VAR

= [Axis] (VAR

s VAR16

Axis: a

DM: da

TypeMe

(VAR16

ode

2.5.1.34.
anoth

16S

16S, DM

R16S), TypeM

R16S+), Type

6x: integer va

an integer 1 to

ta memory op

em: memory o

6x): contents

46

= Assign
her axis

loca

loca

Mem loca
TM

eMem loca
TM

riable VAR16

o 255 represe

perand

operand. One

of variable VA

62

a 16-bit lo

al VAR16D =

al VAR16D =

al VAR16D =
M

al VAR16D =
M, then V16S+

6x

enting the Axis

e of dm (0x1)

AR16x, repre

cal MPL va

[Axis] VAR16

[Axis] VAR16

= [Axis] &(V

= [Axis] &(V
+=1

s ID of the so

, pm (0x0) or

esenting a 16-

MPD U

ariable with

6S

6S, DM

VAR16S),

VAR16S),

ource axis

r spi (0x2) val

-bit address o

User Manual

h data got

ues

of a variable

from

© ElectroC

Descripti

Executio

Example1

Before in

Craft 2013

on Assign
remote
indicat
is follo

Remar
declare
the sam
the sa
advisa
pointer
variabl
the axe

The m
(pm), E

One in
the de

All pre
instruc
future
where
followe

n Copies

1
int Va

...

VarLoc

nstruction

ns a 16-bit lo
e axis can b
ted by a 16-b

owed by a + s

rk: If the MP
ed in the loca
me address in
ame position.
able to establ
r of data tran
les. This way
es.

memory locati
EEPROM SP

nstruction use
stination add

edefined or u
ctions can be
development
the destinatio

ed by “,dm”.

s a 16-bit valu

arLoc, Var

c = [15]Va

46

cal MPL vari
be: a 16-bit M
bit MPL variab
ign, after the

PL variables f
al axis too. M
in both axes,
. Typically, w
lish a block o
nsfers, and t
y you can be

on can be o
I-connected f

es a 9-bit sho
ress range:

ser-defined M
used without

ts, the MPL a
on address c

ue from the re

rExt;

arExt;

 After

63

able with dat
MPL variable
ble (a pointer)
assignment,

from the rem
Moreover, for c

which means
when workin
of user variab
to declare th
sure that the

of 3 types: RA
for MPL progr

ort address f

MPL data are
t checking the
lso includes a
an be any 16

emote source

instruction

ta got from a
e or a memo
) from the rem
it is incremen

mote axis are
correct opera
s that they mu
g with data
bles that may

hese data on
ese variables

AM for data
rams (spi).

for the source

e inside these
e variables ad
assignment in
6-bit value. In

 to the local d

MPD U

nother axis. T
ory location
mote axis. If t
nted by 1.

user variabl
ation, these va
ust be declare

transfers be
y be the sou

n all the axes
s have the sa

(dm), RAM f

e variable. Bi

e address ran
ddresses. How
nstructions us
this case des

destination

User Manual

The source o
whose addre

the pointer va

les, these mu
ariables must
ed on each ax
etween axes,
urce, destinati
s as the first
ame address

for MPL prog

t value X spe

nges, hence
wever, consid
sing a full add
stination varia

on the
ess is
ariable

ust be
t have
xis on
, it is
ion or
t user
on all

grams

ecifies

these
dering
dress
able is

© ElectroCraft 2013 464 MPD User Manual

VarLoc on local axis x VarLoc on local axis 0x1234

VarExt on axis 15 0x1234 VarExt on axis 15 0x1234

Example2
int VarLoc, VarExt;

...

VarLoc = [15]VarExt, dm;

Before instruction After instruction

VarLoc on local axis x VarLoc on local axis 0x1234

VarExt on axis 15 0x1234 VarExt on axis 15 0x1234

Example3
int VarLoc, pVarExt;

...

VarLoc = [15](pVarExt), dm;

Before instruction After instruction

pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1234

At dm address 0x1234
on axis 15

0xFEDC At dm address 0x1234
on axis 15

0xFEDC

VarLoc on local axis x VarLoc on local axis 0xFEDC

Example4
int VarLoc, pVarExt;

...

VarLoc = [15](pVarExt+), dm;

© ElectroCraft 2013 465 MPD User Manual

Before instruction After instruction

pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1235

At dm address 0x1234
on axis 15

0xFEDC At dm address 0x1234
on axis 15

0xFEDD

VarLoc on local axis x VarLoc on local axis 0xFEDC

© ElectroC

Syntax

VAR32D

VAR32D

VAR32D

VAR32D

Operands

Binary co

Craft 2013

6.2

= [Axis] VAR

= [Axis] VAR

= [Axis] (VAR

= [Axis] (VAR

s VAR32

Axis: a

DM: da

TypeMe

(VAR1

ode

2.5.1.35.
anoth

32S

32S, DM

R16S), TypeM

R16S+), Type

2x: long varia

an integer 1 to

ata memory o

em: memory o

16x): contents

46

= Assign
her axis

loca

loca

Mem loca

eMem loca
then

ble VAR32x

o 255 represe

operand

operand. One

s of variable V

66

a 32-bit lo

al VAR32D =

al VAR32D =

al VAR32D =

al VAR32D =
n V16S+=2

enting the Axis

e of dm (0x1)

VAR16x, repre

cal MPL va

[A] VAR32S

[A] VAR32S,

[A] &(VAR16

= [A] &(VAR1

s ID of the so

, pm (0x0) or

esenting a 16

MPD U

ariable with

, DM

6S), TM

6S), TM,

ource axis

r spi (0x2) val

6-bit address

User Manual

h data got

ues

of a variable

from

© ElectroC

Descripti

Executio

Example1

Before in

VarLoc o

VarExt on

Example2

Craft 2013

on Assign
remote
addres
variab

Remar
declare
the sam
the sa
advisa
pointer
variabl
the axe

The m
(pm), E

One in
the de

All pre
instruc
future
where
followe

n Copies

1
long V

…

VarLoc

nstruction

on local axis

n axis 15

2

ns a 32-bit lo
e axis can be
ss indicated b
le is followed

rk: If the MP
ed in the loca
me address in
ame position.
able to establ
r of data tran
les. This way
es.

memory locati
EEPROM SP

nstruction use
stination add

edefined or u
ctions can be
development
the destinatio

ed by “,dm”.

s a 32-bit valu

VarLoc, Va

c = [15]Va

x

0x1234AB

46

cal MPL vari
e: a 32-bit MP
by a 16-bit MP
by a + sign, a

PL variables f
al axis too. M
in both axes,
. Typically, w
lish a block o
nsfers, and t
y you can be

on can be o
I-connected f

es a 9-bit sho
ress range:

ser-defined M
used without

ts, the MPL a
on address c

ue from the re

arExt;

arExt;

 Af

 Va

BCD Va

67

able with dat
PL variable o
PL variable (a
after the assi

from the rem
Moreover, for c

which means
when workin
of user variab
to declare th
sure that the

of 3 types: RA
for MPL progr

ort address f

MPL data are
t checking the
lso includes a
an be any 16

emote source

fter instructi

arLoc on loca

arExt on axis

ta got from a
or 2 consecut
a pointer) from
gnment, it is

mote axis are
correct opera
s that they mu
g with data
bles that may

hese data on
ese variables

AM for data
rams (spi).

for the source

e inside these
e variables ad
assignment in
6-bit value. In

 to the local d

on

al axis 0x

15 0x

MPD U

nother axis. T
tive memory l
m the remote
incremented

user variabl
ation, these va
ust be declare

transfers be
y be the sou

n all the axes
s have the sa

(dm), RAM f

e variable. Bi

e address ran
ddresses. How
nstructions us
this case des

destination

1234ABCD

1234ABCD

User Manual

The source o
location with

e axis. If the p
by 2.

les, these mu
ariables must
ed on each ax
etween axes,
urce, destinati
s as the first
ame address

for MPL prog

t value X spe

nges, hence
wever, consid
sing a full add
stination varia

on the
lower

pointer

ust be
t have
xis on
, it is
ion or
t user
on all

grams

ecifies

these
dering
dress
able is

© ElectroCraft 2013 468 MPD User Manual

long VarLoc, VarExt;

...

VarLoc = [15]VarExt, dm;

Before instruction After instruction

VarLoc on local axis x VarLoc on local axis 0xF0E1A2B3

VarExt on axis 15 0xF0E1A2B3 VarExt on axis 15 0xF0E1A2B3

Example3
long VarLoc;

int pVarExt;

...

VarLoc = [15](pVarExt), dm;

Before instruction After instruction

pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1234

At dm address 0x1234
on axis 15

0xFEDC At dm address 0x1234
on axis 15

0xFEDC

At dm address 0x1235
on axis 15

0x2233 At dm address 0x1235
on axis 15

0x2233

VarLoc on local axis x VarLoc on local axis 0x2233FEDC

Example4 long VarLoc;

int pVarExt;

...

VarLoc = [15](pVarExt+), dm;

Before instruction After instruction

© ElectroC

pVarExt o

At dm ad
on axis 1

At dm ad
on axis 1

VarLoc o

Syntax

[Axis/Gro

[Axis/Gro

[Axis/Gro

[Axis/Gro

Operands

Craft 2013

on axis 15

ddress 0x123
5

ddress 0x123
5

on local axis

6.2

up] VAR16D

up] VAR16D,

up] (VAR16D

up] (VAR16D

s VAR16

Axis/G

• An

• G f

• B fo

dm: da

TypeM

(VAR1

0x1234

34 0xFEDC

35 0x2233

X

2.5.1.36.
locati

= VAR16S

dm = VAR16

D), TypeMem

D+), TypeMem

6x: integer va

Group:

integer 1 to 2

followed by an

or a broadcas

ata memory o

Mem: memory

16x): contents

46

 pV

 At
on

 At
on

 Va

= Assign
ion from an

6S

= VAR16S

m = VAR16S

riable VAR16

255 represen

n integer 1 to

st to all axes

operand

y operand. On

s of variable V

69

VarExt on axi

t dm address
n axis 15

t dm address
n axis 15

arLoc on loca

a 16-bit va
nother axis o

[A/G] VAR1

[A/G] VAR1

[A/G] &(VAR

[A/G] &(VAR
then V16D+

6x

ting an Axis I

 8 representin

ne of dm (0x1

VAR16x, repre

s 15 0x

s 0x1234 0x

s 0x1235 0x

al axis 0x

alue to a M
or group of

6D = local VA

6D, dm = loca

R16D), TM =

R16D), TM =
+=1

D

ng one of the

), pm (0x0) o

esenting a 16

MPD U

x1236

xFEDF

x2233

x2233FEDC

MPL variabl
f axes

AR16S

al VAR16S

local VAR16S

= local VAR1

e 8 groups

or spi (0x2) va

6-bit address

User Manual

le or a mem

S

16S,

alues

of a variable

mory

© ElectroCraft 2013 470 MPD User Manual

Binary code

Description Sends the value of a 16-bit local MPL variable to another axis or group of axes. The
remote destination can be a 16-bit MPL variable or a memory location whose address is
indicated by a 16-bit MPL variable (a pointer) from the remote axis/axes. If the pointer
variable is followed by a + sign, after the assignment, it is incremented by 1. In the binary
code, Axis/Group represents either an Axis ID (if A/G=0) or a Group ID (if A/G = 1). A
transmission with Group ID can be:

• For all the axes from a single group, if one bit from the 8-bit Group ID is 1

• A broadcast to all the axes, if the Group ID = 0

Remark: If the MPL variables from the remote axis are user variables, these must be
declared in the local axis too. Moreover, for correct operation, these variables must have
the same address in both axes, which means that they must be declared on each axis on
the same position. Typically, when working with data transfers between axes, it is
advisable to establish a block of user variables that may be the source, destination or
pointer of data transfers, and to declare these data on all the axes as the first user
variables. This way you can be sure that these variables have the same address on all
the axes.

The memory location can be of 3 types: RAM for data (dm), RAM for MPL programs
(pm), EEPROM SPI-connected for MPL programs (spi).

© ElectroC

Executio

Example1

Before in

VarLoc o

VarExt on

Example2

Before in

VarLoc o

Craft 2013

One in
the de

All pre
instruc
future
where
followe

n Copies

1
int Va

...

[15]Va

nstruction

on local axis

n axis 15

2 int V

...

[G8](p

nstruction

on local axis

nstruction use
stination add

edefined or u
ctions can be
development
the destinatio

ed by “,dm”.

s a 16-bit valu

arLoc, Var

arExt, dm

0x1234

x

VarLoc, pVa

pVarExt),

0xFEDC

47

es a 9-bit sho
ress range:

ser-defined M
used without

ts, the MPL a
on address c

ue from a loca

rExt;

= VarLoc;

 After

 VarLo

 VarEx

arExt;

dm = VarLo

 After

 VarLo

71

ort address f

MPL data are
t checking the
lso includes a
an be any 16

al source to a

instruction

oc on local ax

xt on axis 15

oc;

r instruction

oc on local ax

for the source

e inside these
e variables ad
assignment in
6-bit value. In

a remote dest

xis 0x123

 0x123

xis 0xFED

MPD U

e variable. Bi

e address ran
ddresses. How
nstructions us
this case des

tination

34

34

DC

User Manual

t value X spe

nges, hence
wever, consid
sing a full add
stination varia

ecifies

these
dering
dress
able is

© ElectroCraft 2013 472 MPD User Manual

pVarExt on all axes of
group 8 is the same

0x1234 pVarExt on all axes of
group 8 is the same

0x1234

At dm address 0x1234
on all axes of group 8

x At dm address 0x1234
on all axes of group 8

0xFEDC

Example3
int VarLoc, pVarExt;

...

[G8](pVarExt+), dm = VarLoc;

Before instruction After instruction

VarLoc on local axis 0xFEDC VarLoc on local axis 0xFEDD

pVarExt on all axes of
group 8 is the same

0x1234 pVarExt on all axes of
group 8 is the same

0x1235

At dm address 0x1234
on all axes of group 8

x At dm address 0x1234
on all axes of group 8

0xFEDC

© ElectroC

Syntax

[Axis/Gro

[Axis/Gro

[Axis/Gro

[Axis/Gro

Operands

Craft 2013

6.2

up] VAR32D

up] VAR32D,

up] (VAR16D

up] (VAR16D

s VAR32

Axis/G

• An

• G f

• B fo

dm: da

TypeM

(VAR1

2.5.1.37.
locati

= VAR32S

 DM = VAR3

D), TypeMem

D+), TypeMem

2x: long varia

Group:

integer 1 to 2

followed by an

or a broadcas

ata memory o

Mem: memory

16x): contents

47

= Assign
ion from an

2S

= VAR32S

m = VAR32S

ble VAR32x

255 represen

n integer 1 to

st to all axes

operand

y operand. On

s of variable V

73

a 32-bit va
nother axis o

[A/G] long VA

[A/G] long VA

[A/G] &(VAR

[A/G] &(VAR

ting an Axis I

 8 representin

ne of dm (0x1

VAR16x, repre

alue to a M
or group of

VAR32D = loca

VAR32D, DM =

R16D), TM = l

R16D), TM = l

D

ng one of the

), pm (0x0) o

esenting a 16

MPD U

MPL variabl
f axes

al VAR32S

= local VAR3

ocal VAR32S

ocal VAR32S

e 8 groups

or spi (0x2) va

6-bit address

User Manual

le or a mem

32S

S

S, then V1DS

alues

of a variable

mory

+=2

© ElectroCraft 2013 474 MPD User Manual

Binary code

Description Sends the value of a 32-bit local MPL variable to another axis or group of axes. The
remote destination can be a 32-bit MPL variable or 2 consecutive memory locations with
lower address indicated by a 16-bit MPL variable (a pointer) from the remote axis/axes. If
the pointer variable is followed by a + sign, after the assignment, it is incremented by 2.
In the binary code, Axis/Group represents either an Axis ID (if A/G=0) or a Group ID (if
A/G = 1). A transmission with Group ID can be:

• For all the axes from a single group, if one bit from the 8-bit Group ID is 1

• A broadcast to all the axes, if the Group ID = 0

Remark: If the MPL variables from the remote axis are user variables, these must be
declared in the local axis too. Moreover, for correct operation, these variables must have
the same address in both axes, which means that they must be declared on each axis on
the same position. Typically, when working with data transfers between axes, it is
advisable to establish a block of user variables that may be the source, destination or
pointer of data transfers, and to declare these data on all the axes as the first user
variables. This way you can be sure that these variables have the same address on all
the axes.

The memory location can be of 3 types: RAM for data (dm), RAM for MPL programs
(pm), EEPROM SPI-connected for MPL programs (spi).

© ElectroC

Executio

Example1

Before in

VarLoc o

VarExt on

Example2

Before in

VarLoc o

VarExt on

Craft 2013

One in
the de

All pre
instruc
future
where
followe

n Copies

1
long V

...

[15]Va

nstruction

on local axis

n axis 15

2
long V

...

[15]Va

nstruction

on local axis

n axis 15

nstruction use
stination add

edefined or u
ctions can be
development
the destinatio

ed by “,dm”.

s a 32-bit valu

VarLoc, Va

arExt = Va

0x1234AB

x

VarLoc, Va

arExt, dm

0xF0E1A

x

47

es a 9-bit sho
ress range:

ser-defined M
used without

ts, the MPL a
on address c

ue from a loca

arExt;

arLoc;

 Af

BCD Va

 Va

arExt;

= VarLoc;

 A

2B3 Va

 Va

75

ort address f

MPL data are
t checking the
lso includes a
an be any 16

al source to a

fter instructi

arLoc on loca

arExt on axis

After instructi

arLoc on loca

arExt on axis

for the source

e inside these
e variables ad
assignment in
6-bit value. In

a remote dest

on

al axis 0x

15 0x

ion

al axis 0x

s 15 0x

MPD U

e variable. Bi

e address ran
ddresses. How
nstructions us
this case des

tination

1234ABCD

1234ABCD

xF0E1A2B3

xF0E1A2B3

User Manual

t value X spe

nges, hence
wever, consid
sing a full add
stination varia

ecifies

these
dering
dress
able is

© ElectroCraft 2013 476 MPD User Manual

Example3
long VarLoc;

int pVarExt;

...

[15](pVarExt), dm = VarLoc;

Before instruction After instruction

VarLoc on local axis 0x2233FEDC VarLoc on local axis 0x2233FEDC

pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1234

At dm address 0x1234
on axis 15

x At dm address 0x1234
on axis 15

0xFEDC

At dm address 0x1235
on axis 15

x At dm address 0x1235
on axis 15

0x2233

Example4
long VarLoc;

int pVarExt;

...

[15](pVarExt+), dm = VarLoc;

Before instruction After instruction

VarLoc on local axis 0x2233FEDC VarLoc on local axis 0x2233FEDC

pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1236

At dm address 0x1234
on axis 15

x At dm address 0x1234
on axis 15

0xFEDE

At dm address 0x1235
on axis 15

x At dm address 0x1235
on axis 15

0x2233

© ElectroCraft 2013 477 MPD User Manual

© ElectroC

Syntax

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

[Axis/G

s Axis/G

• An

• G f

• B fo

MPL c

ode

on When
comm
comm
chann
Group

• For

• A b

Rema
The M
The si

n Send t

2.5.1.38.

Group] {MPL

Group:

integer 1 to 2

followed by an

or a broadcas

command: any

an axis exe
and specified
and is execut
el. In the bin
 ID (if A/G = 1

r all the axes

broadcast to a

rk: You may
MPL compiler
ingle comman

he “MPL Com

47

MPL Send

command; }

255 represen

n integer 1 to

st to all axes

y single axis M

ecuting a MP
d between {
ted as any ot
nary code, A
1). A transmis

from a single

all the axes, if

specify betw
splits them in

nds are sent i

mmand” betwe

78

d MPL comm

ting an Axis I

 8 representin

MPL instructio

PL program e
} to another
her on-line M

Axis/Group re
ssion with Gro

e group, if one

f the Group ID

ween { } multip
n single comm
in the same o

een { } to the

mand

D

ng one of the

on

encounters th
r axis or grou

MPL command
presents eith
oup ID can be

e bit from the

D = 0

ple command
mands, each

order as set in

destination

MPD U

e 8 groups

his instruction
up of axes. A
d received via
her an Axis I
e:

8-bit Group I

ds, separated
 having the a

n the comman

User Manual

n, sends the
At destination
a a communic
ID (if A/G=0)

D is 1

d by semicolon
above binary
nd between { }

 MPL
n, the
cation
) or a

ns “;”.
code.
}

© ElectroCraft 2013 479 MPD User Manual

Example

[G1]{CPOS=2000;}; // send a new CPOS command to all axes from group 1

[G1]{UPD}; // send an update command to all the axes from group 1

// all axes from group 1 will start to move simultaneously

[B]{STOP;}; // broadcast a STOP command to all axes from the network

© ElectroC

Syntax

VAR16D

VAR32D

Operands

Binary co

Descripti

Executio

Example

Craft 2013

6.2

= -VAR16S

= -VAR32S

s VAR16

VAR16

VAR32

VAR32

ode

on Assign
instruc
the de

n Copies

int V

long

...

Var1

Var2

2.5.1.39.
variab

set VA

set VA

6D: destinatio

6S: source int

2D: destinatio

2S: source lon

ns a 16-bit / 3
ction uses a 9
stination add

s the negate o

Var1;

Var2;

= - Var1;

= -Var2;

48

=- Assign
ble

AR16D to –VA

AR32D to –VA

on integer var

teger variable

on long/fixed v

ng/fixed varia

32-bit variable
9-bit short ad
ress range:

of a 16-bit or 3

80

a MPL var

AR16S value

AR32S value

riable

e

variable

able

e with the ne
ddress for th

32-bit value f

riable with t

egate of anoth
he destination

from the sourc

MPD U

the negate

her 16-bit / 3
n variable. Bit

ce to the dest

User Manual

of another

32-bit variable
t value X spe

tination

MPL

e. The
ecifies

© ElectroCraft 2013 481 MPD User Manual

Before instruction After instruction

Var1 1256 Var1 -1256

Var2 -224500 Var2 224500

© ElectroC

Syntax

VAR16 +=

VAR16D

VAR32 +=

VAR32D

Operands

Binary co

Descripti

Craft 2013

6.2

= value16

+= VAR16S

= value32

+= VAR32S

s VAR16

VAR16

VAR32

VAR32

value1

value3

ode

on Adds a
the 16
destina

2.5.1.40.

add to

add to

add to

add to

6D: destinatio

6S: source int

2D: destinatio

2D: source lon

6: 16-bit imm

32: 32-bit imm

a 16-bit / 32-b
6-bit / 32-bit d
ation variable

48

+

VAR16 value

VAR16D the

VAR32 value

VAR32D the

on integer var

teger variable

on long/fixed v

ng/fixed varia

mediate intege

mediate long v

bit immediate
estination va

e. Bit value X

82

e16

VAR16S valu

e32

VAR32S valu

riable

e

variable

able

er value

value

value or the
riable. The in
specifies the

ue

ue

value of the
nstructions us

destination a

MPD U

16-bit / 32-bit
se a 9-bit sho
address range

User Manual

t source varia
ort address f
e:

able to
for the

© ElectroCraft 2013 483 MPD User Manual

Execution Destination variable = destination variable + immediate value or source variable

Example
int Var1, Var2, Var3;

 long Var10, Var11, Var12;

 ...

Var1 += 125;

Var3 += Var2;

Var10 += 128000;

Var12 += Var11;

Before instruction After instruction

Var1 1256 Var1 1381

Var2 -22450 Var2 -22450

Var3 22500 Var3 50

Var10 -1201 Var10 126799

Var11 25 Var11 25

Var12 12500 Var12 12525

6.2.5.1.41. -

Syntax

VAR16 -= value16 subtract from VAR16 value16

VAR16D -= VAR16S subtract from VAR16D VAR16S value

VAR32 -= value32 subtract from VAR32 value32

VAR32D -= VAR32S subtract from VAR32D VAR32S value

Operands VAR16D: destination integer variable

 VAR16S: source integer variable

VAR32D: destination long/fixed variable

VAR32S: source long/fixed variable

value16: 16-bit immediate integer value

© ElectroC

Binary co

Descripti

Executio

Example

Before in

Craft 2013

value3

ode

on Subtra
variab
addres

n Destina

int Va

long V

...

Var1 -

Var3 -

Var10

Var12

nstruction

32: 32-bit imm

acts a 16-bit
le from the 1
ss for the des

ation variable

ar1, Var2,

Var10, Var

-= 125;

-= Var2;

-= 128000

-= Var11;

48

mediate long v

/ 32-bit imm
16-bit / 32-bit
stination varia

e = destination

 Var3;

r11, Var12;

;

After i

84

value

mediate value
t destination
able. Bit value

n variable - im

;

instruction

e or the valu
variable. The
e X specifies

mmediate valu

MPD U

e of the 16-
e instructions
the destinatio

ue or source

User Manual

bit / 32-bit s
 use a 9-bit
on address ra

variable

source
short

ange:

© ElectroCraft 2013 485 MPD User Manual

Var1 1256 Var1 1131

Var2 -22450 Var2 -22450

Var3 22500 Var3 44950

Var10 -1201 Var10 -129201

Var11 25 Var11 25

Var12 12500 Var12 12475

© ElectroC

Syntax

VAR16 *

VAR16 *

VAR16A

VAR16A

VAR32 *

VAR32 *

VAR32 *

VAR32 *

Operands

Craft 2013

6.2

VALUE16 >>

VALUE16 <<

* VAR16B >>

* VAR16B <<

VALUE16 >>

VALUE16 <<

VAR16 >> N

VAR16 << N

s VAR16

VAR16

VAR32

VAR32

value1

value3

N: resu

2.5.1.42.

> N

< N

> N

< N

> N

< N

6D: destinatio

6S: source int

2D: destinatio

2S: source lon

6: 16-bit imm

32: 32-bit imm

ult shift factor

48

* Multiply

 PRO

 PRO

 PRO

 PRO

 PRO

 PRO

 PRO

 PRO

on integer var

teger variable

on long/fixed v

ng/fixed varia

mediate intege

mediate long v

86

OD = (VAR16*

OD = (VAR16*

OD = (VAR16A

OD = (VAR16A

OD = (VAR32*

OD = (VAR32*

OD = (VAR32*

OD = (VAR32*

riable

e

variable

able

er value

value

*value16) >>

*value16) <<

A*VAR16B) >

A*VAR16B) <

*value16) >>

*value16) <<

*VAR16) >> N

*VAR16) << N

MPD U

N

N

>> N

<< N

N

N

N

N

User Manual

© ElectroCraft 2013 487 MPD User Manual

Binary code

Description Multiplies 2 operands. The first operand (left one) can be a 16-bit or 32-bit MPL variable.
The second operand (right one) can be a 16-bit immediate value or another 16-bit MPL
variable. The result is saved in a dedicated 48-bit product register left or right shifted by
0 to 15 bits. The MPL long variables PROD and PRODH show the 32LSB respectively
the 32 MSB of the product register.

© ElectroCraft 2013 488 MPD User Manual

Execution Product register = (first operand * second operand) shifted to left or right with the
specified number of bits

Example1
int Var1;

long var2;

...

Var1 * 0x125;

Var2 = PROD;

Before instruction After instruction

Var1 0x1256 Var1 0x1256

Product register x Product register 0x00000014FC6E

Var2 x Var2 0x0014FC6E

Example2
int Var1;

 long Var2;

...

Var1 * 0x125 << 12;

Var2 = PRODH;

Before instruction After instruction

Var1 0x1256 Var1 0x1256

Product register x Product register 0x00014FC6E000

Var2 X Var2 0x00014FC6

Example3
int Var2, Var3;

 long Var4;

...

Var2 * Var3 >> 4;

Var4 = PROD;

Before instruction After instruction

Var2 0x1256 Var2 0x1256

© ElectroCraft 2013 489 MPD User Manual

Var3 0x125 Var3 0x125

Product register x Product register 0x000000014FC6

Var4 x Var4 0x00014FC6

Example4
int Var2, Var3;

 long Var7;

...

Var2 * Var3 << 8;

Var7 = PROD(H);

Before instruction After instruction

Var2 0x1256 Var2 0x1256

Var3 0x125 Var3 0x125

Product register x Product register 0x000014FC6E00

Var7 x Var7 0x000014FC

Example5
long Var1, Var2;

 ...

Var1 * 0x125;

Var2 = PROD;

Before instruction After instruction

Var1 0x001256AB Var1 0x1256

Product register x Product register 0x000014FD31B7

Var2 x Var2 0x14FD31B7

Example6
long Var1, Var2;

...

© ElectroCraft 2013 490 MPD User Manual

Var1 * 0x125 << 12;

Var2 = PROD(H);

Before instruction After instruction

Var1 0x001256AB Var1 0x1256

Product register x Product register 0x014FD31B7000

Var2 x Var2 0x014FD31B

© ElectroCraft 2013 491 MPD User Manual

Example7
long Var2, Var9;

int Var3;

...

Var2 * Var3 >> 4;

Var9 = PROD(H);

Before instruction After instruction

Var2 0x001256AB Var2 0x001256AB

Var3 0x125 Var3 0x125

Product register x Product register 0x0000014FD31B

Var9 x Var9 0x0000014F

Example8
long Var2, Var9;

int Var3;

...

Var2 * Var3 << 8;

Var9 = PROD;

Before instruction After instruction

Var2 0x001256AB Var2 0x001256AB

Var3 0x125 Var3 0x125

Product register x Product register 0x0014FD31B700

Var9 X Var9 0xFD31B700

6.2.5.1.43. /

Syntax

VAR32 /= VAR16 divide VAR32 with VAR16

Operands VAR16: the divisor, integer variable

© ElectroC

Binary co

Descripti

Executio

Example

Before in

Var1

Var2

Syntax

VAR16 >>

VAR32 >>

PROD >>

Operands

Craft 2013

VAR32

ode

on The le
result
the div

n Left op

fixed

int v

var1

var2

var1

nstruction

11.0 (0x

3

6.2

>= N

>= N

>= N

s VAR16

VAR32

PROD

N: shift

2: the dividend

eft operand –
is saved in th

visor a 16-bit i

perand = left o

d var1; //

var2; // De

= 11.0;

= 3;

/= var2;

xB0000)

2.5.1.44.

6: integer vari

2: long or fixe

: 48-bit produ

t factor

49

d, fixed variab

– the dividend
he left operan
integer variab

operand / righ

Define fi

efine inte

After in

Var1

Var2

>>

shift V

shift V

shift P

iable

d variable

uct register

92

ble

d is divided b
nd. The divid
ble.

ht operand

ixed variab

eger variab

nstruction

3.6666 (0

3

VAR16 right b

VAR32 right b

PROD (produ

by the right o
dend / quotien

ble user_1

ble user_2

0x3AAAA)

by N

by N

uct reg.) right

MPD U

operand – th
nt is a 32-bit

1

2

by N

User Manual

he divisor, an
fixed variabl

nd the
e and

© ElectroC

Binary co

Descripti

Executio

Example1

Before in

Var1

Example2

Before in

Var1

Example3

Craft 2013

ode

on The op
extend
registe

n Variab

1 int V

...

Var1

nstruction

0x

2 long

...

Var1

nstruction

0x

3 PROD

perand is righ
ded and the lo
er is right shift

ble = Value of

Var1;

>>= 4;

x1256

Var1;

>>= 12;

x1256ABAB

>>= 4;

49

ht shifted with
ow order bits
ted.

variable shift

After

Var1

After

Var1

93

the specified
are lost. If the

ted to right wi

r instruction

r instruction

d number of b
e operand is

ith N bits

0x0125

0x0001256

MPD U

bits (N). High o
PROD, the en

6A

User Manual

order bits are
ntire 48-bit pr

e sign-
roduct

© ElectroCraft 2013 494 MPD User Manual

Before instruction After instruction

Product register 0x12560000ABCD Product register 0x0012560000ABC

© ElectroC

Syntax

VAR16 <<

VAR32 <<

PROD <<

Operands

Binary co

Descripti

Executio

Example1

Craft 2013

6.2

<= N

<= N

<= N

s VAR16

VAR32

PROD

N: shift

ode

on The op
and th
registe

n Variab

1
int Va

...

Var1 <

2.5.1.45.

6: integer vari

2: long variab

: product regi

t factor

perand is left
he low order
er is left shifte

ble = Value of

ar1;

<<= 4;

49

<<

shift V

shift V

shift P

iable

le

ister

shifted with
bits are zero

ed.

variable shift

95

VAR16 left by

VAR32 left by

PROD (produ

the specified
oed. If the o

ted to left with

y N

y N

uct reg.) right

 number of b
operand is PR

h N bits

MPD U

by N

bits (N). High
ROD, the en

User Manual

order bits ar
ntire 48-bit pr

re lost
roduct

© ElectroCraft 2013 496 MPD User Manual

Before instruction After instruction

Var1 0x1256 Var1 0x2560

Example2
long Var1;

...

Var1 <<= 12;

Before instruction After instruction

Var1 0x1256ABAB Var1 0x6AABAB000

Example3
PROD <<= 4;

Before instruction After instruction

PROD 0x12560000ABCD PROD 0x2560000ABCD0

© ElectroC

Syntax

ABORT

Operands

Binary co

Descripti

Example
..

CA

ST

..

EN

Fi

 ..

 CA

 MO

RE

Se

 ..

 GO

RE

Craft 2013

6.2

s –

ode

on ABORT
instruct
instruct

...

ALLS First

TOP;

...

ND;

irst_Funct

...

ALL Second

ODE PP;

....

ET;

econd_Func

...

OTO user_l

ABORT;

user_l

....

ET;

2.5.1.46.

T command
tion. After the
tion after the c

_function;

ion: //def

d_Function;

 //R

tion: //de

label, user

; //Cancel

//Ne

label:

 //R

49

ABORT

Abort cance

cancels the
e execution
cancelable ca

; //Cance

//Stop

//End o

finition of

; //Call

Return from

efinition o

r_var,EQ;/

the execut

ext MPL ins

Return from

97

elable MPL fu

e execution
of ABORT,

all of the func

elable cal

the motio

of MPL pro

f First_Fu

function

m First_Fu

of First_F

//Branch to

//user

tion of Fi

struction

m Second_f

nction

of a MPL
the MPL pro

ction.

ll of First

on

ogram

unction

Second_Fun

unction

Function

o user_lab

r_var ==0

irst_Functi

executed i

function

MPD U

function call
ogram contin

t_function

nction

belif

ion

is STOP;

User Manual

ed using CA
nues with the

n

ALLS
e next

© ElectroC

Syntax

ADDGRID

Operands

Binary co

Descripti

Example

//

AD

..

[G

Craft 2013

6.2

D (value_1, v

s value_

ode

on The co
a filter
compa
one gr
group
1 or gr
bit 0 –

After th

•

•

•

•

/local axi

DDGRID (2,

...

G4] {STOP;

2.5.1.47.

value_2,…)

_1, value_2: s

ommand adds
r for a multic
ares the mess
roup in comm
1 and group
roup 3. The g
group 1, bit 1

he execution

Bit 0 is set

Bit 1 is set

…

Bit 7 is set

s has grou

 4); //l

//ne

} //s

//lo

49

ADDGRID

Add the spe

specify a grou

s more group
ast transmiss
sage group ID
mon, the mes
3, it will recei
group ID is an
1 – group 2…

of this comm

to 1, if (group

to 1, if (group

to 1, if (group

up ID = 1 -

local axis

ew group ID

send stop m

ocal axis w

98

ecified groups

up number be

ps to the grou
sion. When a
D with its own
ssage is acce
ive all the me
n 8-bit intege
 bit 7 – group

and, the grou

p) 1 occurs in

p) 2 occurs in

p) 8 occurs in

-> belongs

belongs a

D = 11 (00

motion to

will stop

s to GROUP I

tween 1 and

up ID. On eac
a multicast m
n group ID. If
epted. For ex
essages sent
er value. Each
p 8.

up ID value is

the parenthe

the parenthe

the parenthe

s to group

also to gro

0001011b)

all axes f

too as mem

MPD U

ID

8

ch axis, the g
message is re

the two group
xample, if an
with a group
h bit correspo

s modified as

esis

esis

esis.

1

oups 2 and

from group

mber of gr

User Manual

roup ID repre
eceived, each
p IDs have at
axis is memb
ID including

onds to one g

follows:

d 4

p 4

roup 4

esents
h axis
t least
ber of
group
group:

© ElectroC

Syntax

AXISID v

AXISID V

Operands

Binary co

Descripti

Example

AX

..

[1

..

[9

Craft 2013

6.2

value16

VAR16

s value1

VAR16

ode

on The co
throug
messa

After th
or the

XISID 10;

...

10] {AXISI

...

9] {CSPD =

2.5.1.48.

16: immediate

6: integer vari

ommand chan
h a unique

age is an axis

he execution
value of the 1

 //f

D 9;} //c

//in

//th

 30;} //Se

49

AXISID

Set AXIS ID

Set AXIS ID

e value betwe

iable

nges the axis
number betw
ID, the mess

of this comm
16-bit variable

from now on

change the

nstruction

he actual a

end CPOS =

99

D address

D with value o

en 1 and 255

s ID. In multip
ween 1 and
sage is receiv

mand, the axis
e.

n, the loc

ID of axi

is send a

axis 10)

30 to axi

of VAR16

5

ple-axis config
255 – the a

ved only by th

s ID is set with

cal axis ID

is 10 to 9

and execute

is 9 (previ

MPD U

gurations, eac
axis ID. If the
e axis with th

h the immedia

D is 10

(this

ed on

ious axis

User Manual

ch axis is iden
e destination

he same axis

ate value spe

10)

ntified
n of a
ID.

ecified

© ElectroC

Syntax

AXISOFF

Operands

Binary co

Descripti

Example

//

//

//

CA

CS

CP

CP

Loop: MO

 CP

UP

 AX

!M

WA

A

!

WA

GO

Craft 2013

6.2

F AXI

s –

ode

on The co
output
measu
the su
automa
goes fr

/ Execute

/ Motor ma

/ feedback

ACC = 0.31

SPD = 33.3

POS = 6000

PA; //posi

ODE PP; //

POS += 600

PD; //exec

XISON;

MC; // set

AIT!;//Wai

AXISOFF; //

RT 20000;

AIT!; //Wai

OTO Loop;

2.5.1.49.

IS is OFF (de

ommand deac
commands

urements rem
pply voltage
atically gene
rom status en

repetitive

ay move fre

k: 500 line

83;//accel

333;//slew

;//positio

tion comma

/ position

00; set new

ute immedi

//Activat

 event on

t until th

/Deactivate

//set a 2

it until th

//Restart

50

AXISOFF

eactivate cont

ctivates the d
for the pow

main active an
continue to

rated when a
nabled to stat

e moves. A

eely. Rest

es increme

leration ra

w speed = 1

on command

and is abso

profile

w position

iate

te the cont

motion com

he event oc

e the cont

20s delay (

he event o

t the motio

00

rol)

drive control lo
wer stage (a
d therefore th
be updated a
a protection i
us disabled.

After each

tart after

ental encod

ate = 1000

1000[rpm]

= 3[rot]

olute

n command

trol loops

mplete

ccurs i.e.

trol loops

(1s = 1000

ccurs (to

on

oops, the refe
all the switch
he motor curr
and monitore
is triggered o

one, set

20s. Posi

der (2000

0[rad/s^2]

s and PWM o

. the motor

and PWM o

0 slow loop

pass the

MPD U

erence gener
hing devices
rents, speed,
ed. The AXIS
or when the

AXISOFF.

ition

counts/rev

outputs

r stops

outputs

p sampling

20s)

User Manual

rator and the
s are off). A
position as w

SOFF comma
drive Enable

v)

gs)

PWM
All the
well as
and is

input

© ElectroC

Syntax

AXISON

Operands

Binary co

Descripti

Example

//

//

//

CA

CS

CP

CP

Loop: MO

 CP

UP

Craft 2013

6.2

s –

ode

on The co
output
operatio
or after

When A
calcula
AXISO
speed
the refe

• Set
auto
pos

• Exe

• Exe

If first A
zero vo

/ Execute

/ Motor ma

/ feedback

ACC = 0.31

SPD = 33.3

POS = 6000

PA; //posi

ODE PP; //

POS += 600

PD; //exec

2.5.1.50.

ommand activ
commands f

on after an A
r the drive/mo

AXISON is s
tions for las
FF. If the load
may differ qu
erence genera

again the mo
omatically se
ition and spee

ecute update c

ecute AXISON

AXISON is iss
oltages to the

repetitive

ay move fre

k: 500 line

83;//accel

333;//slew

;//positio

tion comma

/ position

00; set new

ute immedi

50

AXISON

AXIS is O

vates the driv
for the powe

AXISOFF. It is
otor Enable in

et after an A
t programme
d/motor has m

uite a lot from
ator. In order

otion mode, e
et the target
ed with the ac

command UP

N

sued after po
e motor.

e moves. A

eely. Rest

es increme

leration ra

w speed = 1

on command

and is abso

profile

w position

iate

01

N (activate co

ve control loo
er stage. Th
s typically use
put goes from

AXISOFF com
ed motion m
moved during

m the values o
update the re

even if it rema
update mod

ctual measure

PD

wer on before

After each

tart after

ental encod

ate = 1000

1000[rpm]

= 3[rot]

olute

n command

ontrol)

ops, the refer
e AXISON c

ed following a
m status disab

mmand, the re
mode from th
g AXISOFF, it
of the target p
eference gen

ains the same
de zero (TUM
ed values of t

e setting any

one, set

20s. Posi

der (2000

0[rad/s^2]

MPD U

rence genera
command re
 fault reset co
bled to status

eference gen
he same poi
ts actual valu
position and
erator:

e. The motion
M0), which u
the load posit

motion mode

AXISOFF.

ition

counts/rev

User Manual

ator and the
stores the n
ommand FAU
s enabled.

nerator resum
int left befor
es for positio
speed provid

 mode comm
updates the
tion and spee

e, the drive a

v)

PWM
normal
ULTR,

mes its
re the
on and

ed by

mands,
target

ed

pplies

© ElectroCraft 2013 502 MPD User Manual

 AXISON; //Activate the control loops and PWM outputs

!MC; // set event on motion complete

WAIT!;//Wait until the event occurs i.e. the motor stops

AXISOFF; //Deactivate the control loops and PWM outputs

!RT 20000; //set a 20s delay (1s = 1000 slow loop samplings)

WAIT!; //Wait until the event occurs (to pass the 20s)

GOTO Loop; //Restart the motion

© ElectroC

Syntax

BEGIN

Operands

Binary co

Descripti

Example

BE

..

EN

..

EN

Craft 2013

6.2

s –

ode

on This c
drive/m
the bin
is true
instruc
mode a

EGIN;

..

NDINIT;

.

ND;

2.5.1.51.

command mu
motor reads t
nary code is 0
, the MPL pr

ction after BE
and waits to r

// Starti

 //E

 //e

50

BEGIN

Beginning

ust be the f
the first EEPR
0x649C corre
rogram from t
EGIN. If the
receive comm

ing point o

End of init

end of main

03

g of a MPL pro

irst in a MP
ROM memory
esponding to
the EEPROM
e condition is
mands from a

of a MPL p

tializatio

n section

ogram

PL program.
ry location at
the MPL inst

M memory is
s false, the d
host via a co

program

on

of a MPL p

MPD U

In the AUT
address 0x4

truction BEGI
executed sta

drive/motor e
ommunication

program

User Manual

ORUN mode
4000 and che
IN. If this con
arting with the
enters in the
n channel.

e, the
ecks if
ndition
e next
slave

© ElectroC

Syntax

CALL Lab

CALL val

CALL VA

CALL Lab

CALL val

CALL VA

Operands

Craft 2013

6.2

bel

lue16

AR16

bel, VAR, Fla

lue16, VAR, F

AR16, VAR, F

s Label:

Value1

VAR16

VAR: 1

Flag: o

2.5.1.52.

U

U

U

ag C

Flag C

Flag C

a label provid

16: immediate

6: integer vari

16 or 32-bit M

one of the con

50

CALL

Unconditiona

Unconditiona

Unconditiona

CALL if VAR

CALL if VAR

CALL if VAR

ding the 16-b

e 16-bit of a M

iable containi

MPL test varia

nditions: EQ,

04

l CALL

l CALL

l CALL

R Flag 0

R Flag 0

R Flag 0

it value of a M

MPL function

ng the MPL f

able compared

NEQ, LT, LE

MPL function

address

function addre

d with 0

Q, GT, GEQ

MPD U

address

ess

User Manual

© ElectroCraft 2013 505 MPD User Manual

Binary code

Description Calls a MPL function (subroutine). A MPL function is a set of MPL commands which starts
with a label and ends with the RET instruction. The label gives the MPL function address
and name. MPL function address may also be specified by an immediate value or by the
value of a 16-bit MPL variable. The call can be unconditional or unconditional. In a
conditional call, a condition is tested. If the condition is true the MPL function is executed,
else the next MPL command is carried out. The condition is specified by a 16-bit or 32-bit
test variable (VT=0 for 16-bit variable and VT = 1 for 32-bit variable) and a test condition
added after the label with the MPL function address. The test variable is always compared
with zero. The possible test conditions are:

EQ if VAR = 0

NEQ if VAR ≠ 0

LT if VAR < 0

LEQ if VAR ≤ 0

GT if VAR > 0

GEQ if VAR ≥ 0

© ElectroCraft 2013 506 MPD User Manual

Example
CALL Function1, var1, GEQ; //call Function1 if i_var1 >= 0

CALL Function1, var1, EQ; //call Function1, if i_var1 = 0

CALL Function1, var1, NEQ; //call Function1, if i_var1 != 0

CALL Function1; //call Function1 unconditionally

...

END; // end of MPL program main section

Function1:

...

RET;

© ElectroC

CALLS C

Syntax

CALLS L

CALLS V

Operands

Binary co

Descripti

Example
..

CC

ST

..

EN

Function

Craft 2013

6.2

ancelable cal

abel

VAR16

s Label:

VAR16

ode

on Calls a
ABOR
which
functio
immed

Only o
while a
comma
While a

..

CALL fct1;

TOP;

..

ND;

n1:

...

ABORT;

2.5.1.53.

ll of a MPL fu

C

C

16-bit progra

6: integer vari

a MPL functio
RT command.

starts with a
on address a
diate value or

one function m
another one
and error is
a cancelable

; //c

 //

 //

50

CALLS

nction

Cancelable C

Cancelable C

am memory a

iable

on (subroutine
 This is a can

a label and e
and name. M
by the value

may be called
is still active
set in error r
call is active,

cancelable

Function1

if this co

07

CALL of a MP

CALL with add

ddress

e) with possib
ncelable call.

ends with the
MPL function
of a 16-bit M

 with a cance
e (the called
register MER
 SRL.8 = 1.

call of F

definitio

ommand is

PL function

dress set in V

bility to interru
 A MPL funct

e RET instruc
n address m
PL variable.

elable call at a
function is i

R.14. Also sta

Function1

on

encountere

MPD U

VAR16

upt the functio
tion is a set o
ction. The lab
may also be

a time. A can
in execution)
atus register

ed or

User Manual

on execution
of MPL comm
bel gives the
e specified b

ncelable call is
) is ignored a
low SRL.7 i

using
mands
e MPL
by an

ssued
and a
s set.

© ElectroCraft 2013 508 MPD User Manual

 // got via a communication channel

... // next instruction executed is STOP

RET;

© ElectroC

Syntax

CANBR v

CANBR V

Operands

Binary co

Descripti

Craft 2013

6.2

value16

VAR16

s value1

VAR16

ode

on Sets th
new ba
variable

The cu
any mo

a. Wi

b. If th

c. If th

Remar

• Us
to e
at
mu

2.5.1.54.

Set CA

Set CA

16: 16-bit unsi

6: 16-bit integ

e baud rate a
aud settings c
e. In both cas

urrent CAN-b
oment. The CA

th the value r

he setup table

here is no ba

rks:

se this comma
execute the M
a CAN baud

ust start with a

50

CANBR

AN-bus Baud

AN-bus Baud

igned integer

ger variable

and bit samp
can be provide
ses, the possi

us settings a
AN-bus baud

read from the

e is invalid, w

ud rate set by

and when a d
MPL program
d rate differen
a CAN baud r

09

Rate to value

Rate to VAR

immediate va

ling timing fo
ed either as a
ble values ar

are saved in t
 rate is set at

EEPROM se

with the last ba

y a valid setu

drive/motor op
m from the EEP
nt from the de
rate change.

e16

R16

alue

r the CAN-bu
an immediate
re:

the MPL regi
t power on us

etup table

aud rate read

p table, with 5

perates in AU
PROM) and i
efault value.

MPD U

us communica
e value or by t

ister CBR, an
sing the follow

d from a valid

500kb

UTORUN (aft
it must comm
In this case,

User Manual

ation channe
the value of a

nd may be re
wing algorithm

setup table

ter power on
unicate with a
the MPL pro

l. The
a MPL

ead at
m:

starts
a host
ogram

© ElectroCraft 2013 510 MPD User Manual

• An alternate solution to the above case is to set via CANBR command the desired
baud rate and then to save it in the EEPROM, with the command SAVE. After a reset,
the drive/motor starts directly with the new baud rate, if the setup table was valid.
Once set, the new default baud rate is preserved, even if the setup table is later on
disabled, because the default CAN baud rate is stored in a separate area of the
EEPROM.

Example

CANBR 0x1273; // set CAN-bus for 1Mb

© ElectroC

Syntax

CHECKS

CHECKS

Operands

Binary co

Descripti

Example

//

in

..

Craft 2013

6.2

SUM, TM Val_

SUM, TM VAR

s Val_S:

Val_E:

VAR_S

VAR_E

VARD:

TM: M

ode

on Compu
and an
unsigne
a 16-bi
RAM fo

/ compute

nt user_va

...

2.5.1.55.

_S, Val_E, VA

R_S, VAR_E,

 16-bit unsign

16-bit unsign

S: 16-bit variab

E: 16-bit variab

16-bit variabl

emory type (s

utes the sum
 end address
ed immediate
t destination

or MPL progra

checksum b

r;

51

CHECKSU

ARD Chec

VARD Chec
VAR_

ned integer va

ed integer va

ble containing

ble containing

le containing

see TypeMem

module 6553
s. The start a
e values or via
variable. The

ams (pm), EE

between EEP

1

UM

ksum betwee

ksum betwee
S and VAR

alue represen

alue represent

g the checksu

g the checksu

the checksum

m table below

36 of all the
address and t
a 2 16-bit MP
e memory loc
EPROM SPI-c

PROM addre

en addresses

en addresse
_E

nting the chec

ting the chec

um start addre

um end addre

m result

w)

memory loca
the end addr
L variables. T

cation can be
connected for

esses 0x500

MPD U

Val_S and V

es set in var

cksum start a

ksum end ad

ess

ess

ations betwee
ress may be
The checksum
of 3 types: R

r MPL program

00 and 0x5

User Manual

Val_E

riables

ddress

dress

en a start ad
specified as

m result is sav
RAM for data
ms (spi).

5007

ddress
16-bit
ved in
(dm),

© ElectroCraft 2013 512 MPD User Manual

CHECKSUM, spi 0x5000, 0x5007, user_var; // user_var = checksum value

Before instruction After instruction

user_var x user_var 0xD467

EEPROM start address
0x5000

0xB004 EEPROM start address
0x5000

0xB004

EEPROM address 0x5001 0x0FF1 EEPROM address 0x5001 0x0FF1

EEPROM address 0x5002 0x0366 EEPROM address 0x5002 0x0366

EEPROM address 0x5003 0x0404 EEPROM address 0x5003 0x0404

EEPROM address 0x5004 0x0C09 EEPROM address 0x5004 0x0C09

EEPROM address 0x5005 0x0010 EEPROM address 0x5005 0x0010

EEPROM address 0x5006 0x00E7 EEPROM address 0x5006 0x00E7

EEPROM address 0x5007 0x0008 EEPROM address 0x5007 0x0008

© ElectroC

Only avai

Syntax

CIRCLE1

CIRCLE2

Operands

Binary co

Descripti

Craft 2013

6.2

lable on multi

 Radius, The

2 Radius, The

s Radius

Theta_

Theta_

ode

on CIRCLE
Mode.
CW mo

Based
Develo
PVT po

If the po
actual p

2.5.1.56.

i-axis Motion

eta_inc

eta_start

s – circle radi

_start – start a

inc – angle in

E1 and CIRC
Positive valu

ovement.

on Radius,
per computes

oints for slave

oints are sen
parameters o

51

CIRCLE

Controller

Vector C

us

angle for circu

ncrement for c

CLE2 define
es for Theta_

Theta_inc
s the actual p

e axes.

t from a host
f the circular

3

CIRCLE segm

ular segment

circular segm

a circular se
_inc mean C

and Theta_s
parameters u

then the follo
segment:

ment

ment

gment for 2D
CW moveme

start the MP
sed by the m

owing relation

MPD U

D trajectory e
ent while neg

PL compiler
motion control

ns must be us

User Manual

executed in V
ative values

from Motion
ler to genera

sed to compu

Vector
mean

nPRO
te the

te the

© ElectroCraft 2013 514 MPD User Manual

Example

// Vector mode – circle with radius 3.14mm. Position feedbacks: 500

// lines incremental encoder

 SETMODE 0xCF00; //Clear buffer

 VPLANE (A, B, C); //Define coordinate system and tangent axis

 RESRATIOX=0u;

 RESRATIOY=0u;

 NLINESTAN=2000;

 MODE VM; // Set Vector Mode

 // Circular segment of radius 3.14159[mm], with initial angle 0[deg] and
angle increment 360[deg])

 CIRCLE1 1L, 360.; CIRCLE2 1L, 0.;

 UPD; //Execute immediate

 // Insert End Segment

 VSEG1 0L, 0L; VSEG2 0L, 0L;

© ElectroC

Syntax

CPA

Operands

Binary co

Descripti

Example

//

//

//

CA

CS

CP

CP

MO

TU

UP

Craft 2013

6.2

s –

ode

on After t
consid
profiles

/Position

/Position

/ encoder

ACC = 0.31

SPD = 16.6

POS = 1200

PA; //posi

ODE PP;

UM1; //set

PD; //exec

2.5.1.57.

C

the executio
ered as abs
s, PVT and P

profile

feedback:

(2000 coun

83;//accel

667;//slew

0;//positi

tion comma

 Target Up

ute immedi

51

CPA

Command Po

on of this in
solute in the
PT. This settin

500 lines

nts/rev)

leration ra

w speed = 5

ion command

and is abso

pdate Mode

iate

5

osition is Abso

nstruction, al
following m

g remains un

increment

ate = 1000

500[rpm]

d = 6[rot]

olute

1

olute

l subsequen
motion modes
ntil the execut

tal

0[rad/s^2]

]

MPD U

nt position c
s: trapezoida
tion of a CPR

User Manual

commands w
l profiles, S-

R command.

will be
-curve

© ElectroC

Syntax

CPR

Operands

Binary co

Descripti

Example

//

//

//

CA

CS

CP

CP

MO

TU

UP

!M

Syntax

Craft 2013

6.2

s –

ode

on After t
consid
profiles
trapezo
(defau
adding
comma
adding
mome

The a
disable
relative

/Position

/Position

/ encoder

ACC = 0.31

SPD = 16.6

POS = 7000

PR; //posi

ODE PP;

UM1; //set

PD; //exec

MC; WAIT!;

6.2

2.5.1.58.

C

the executio
ered as rela
s, PVT and P
oidal profile
lt) or additive

g the position
and is execut
g the position
nt when the c

dditive relativ
ed after an u
e mode.

profile

feedback:

(2000 coun

83;//accel

667;//slew

;//positio

tion comma

 Target Up

ute immedi

 //wait fo

2.5.1.59.

51

CPR

Command Po

on of this in
ative in the
PT. This settin
mode, the p
e. In standar
n increment t
ted. In the ad
n increment t
command was

ve mode is
pdate comma

500 lines

nts/rev)

leration ra

w speed = 5

on command

and is rela

pdate Mode

iate

or completi

DINT

6

osition is Rela

nstruction, al
following mo

ng remains un
osition to rea
rd relative m
to the instan
ditive relative
to the previo
s issued.

activated by
and UPD, wh

increment

ate = 1000

500[rpm]

= 3.5[rot

ative

1

ion

ative

l subsequen
otion modes
ntil the execu
ach can be c
ode, the pos

ntaneous pos
e mode, the p
ous position t

y setting ACR
hich sets ACR

tal

0[rad/s^2]

t]

MPD U

nt position c
: trapezoidal

ution of a CPA
computed in
sition to reac
sition in the m
position to rea
to reach, ind

R.11 = 1 an
R.11 = 0 rest

User Manual

commands w
l profiles, S-
A command.

2 ways: sta
ch is compute
moment whe

ach is comput
dependently o

nd is automa
toring the sta

will be
-curve
In the
ndard
ed by

en the
ted by
of the

atically
ndard

© ElectroC

DINT

Operands

Binary co

Descripti

Example

DI

Craft 2013

s –

ode

on After t
indepe
to glob

After p
Int0, I
transiti

Remar
are no

• The
those
MPL
witho
EINT

• If yo
the o
own
More

INT; //glo

D

the execution
endently of the
bally enable M

power on, the
nt1, Int2 and
ions on the E

rk: Some of t
t handled cor

MPL interrup
e MPL interru

L interrupts ar
out waiting loo
T command d

u modify the
original MPL c

commands,
eover, the orig

bally disa

51

Disable MPL

n of this ins
eir status in th

MPL interrupts

e MPL interrup
d Int3. These
nable input, u

the drive/moto
rrectly. In orde

pts must be
upts triggered
re globally di
ops. If this is

during your IS

interrupt ser
commands fro

but these s
ginal MPL com

able all MP

7

INTerrupts

struction, all
he interrupt c
s.

pts are globa
e interrupts h
using a defau

or protections
er to avoid thi

kept globally
d by protection
isabled, you
not possible,

SR execution.

rvice routines
om the defau
should not in
mmands mus

PL interru

the MPL in
control registe

ally enabled to
handle the d

ult set of interr

s may not wor
is situation ke

y enabled to
ns. As during
should keep
 you must glo

for Int 0 to I
ult ISR. Put in
nterfere with
st be present

upts

MPD U

nterrupts are
er ICR. Use th

ogether with
drive/motor pr
rupt service ro

rk properly if
eep in mind th

allow execut
g a MPL inter
p the ISR as
obally enable

Int 4, make s
other words,
the original

in all the ISR

User Manual

globally dis
he EINT instru

the MPL inte
rotections an
outines (ISR)

the MPL Inte
he following r

tion of the IS
rrupt executio
short as pos

e the interrupt

sure that you
 you may add
MPL comm

R execution pa

sabled
uction

rrupts
nd the
).

rrupts
rules:

SR for
on, the
ssible,
ts with

u keep
d your

mands.
aths.

© ElectroC

Syntax

DIS2CAP

Operands

Binary co

Descripti

Example

DI

Syntax

DISCAPI

Operands

Binary co

Descripti

Example

DI

Craft 2013

6.2

PI

s –

ode

on After t
detect

Use th
high-lo

IS2CAPI; /

6.2

s –

ode

on After t
detect

Use th
low or

ISCAPI; //

2.5.1.60.

D

he execution
transitions is

he EN2CAPI0
ow or low-high

/disable 2

2.5.1.61.

D

he execution
transitions is

he ENCAPI0 o
low-high tran

disable 1s

51

DIS2CAPI

DISable 2nd C

n of this instru
 disabled.

0 or EN2CAP
h transitions.

2nd capture

DISCAPI

DISable CAP

n of this instr
 disabled.

or ENCAPI1
nsitions.

st capture/

8

CAPture Inde

uction the 2n

PI1 instructio

e/encoder

Pture Index

ruction the 1s

instructions t

/encoder i

ex

nd capture/en

ons to enable

index inpu

st capture/en

to enable this

index input

MPD U

ncoder index

e this input c

ut

ncoder index

s input capab

t

User Manual

input capabi

capability to d

input capabi

bility to detect

ility to

detect

ility to

t high-

© ElectroC

Syntax

DISLSN

Operands

Binary co

Firmware

Firmware

Descripti

Example

DI

Craft 2013

6.2

s –

ode

e version FAx

e version FBx

on After t
transiti

Use th
low or

Remar
outside
are en

ISLSN; //d

2.5.1.62.

D

xx

xx

he execution
ions is disable

he ENLSN0 o
low-high tran

rk: The main
e the working
abled or not t

isable LSN

51

DISLSN

DISable Limit

 of this instru
ed.

or ENLSN1 in
nsitions.

task of the li
g area is perfo
to detect tran

N input cap

9

t Switch Nega

uction, the ne

nstructions to

imit switch inp
ormed indepe
sitions

pability t

ative

egative limit s

o enable this

puts i.e. to pr
endently of the

to detect t

MPD U

switch input c

input capabi

rotect against
e fact that the

transition

User Manual

capability to d

ility to detect

t accidental m
e limit switch i

ns

detect

high-

moves
inputs

© ElectroC

Syntax

DISLSP

Operands

Binary co

Firmware

Firmware

Descripti

Executio

Example

DI

Craft 2013

6.2

s –

ode

e version FAx

e version FBx

on After t
transiti

Use th
or low-

Remar
outside
are en

n Disabl

ISLSN; //d

2.5.1.63.

D

xx

xx

he execution
ions is disable

he ENLSP0 or
-high transitio

rk: The main
e the working
abled or not t

e positive lim

isable LSN

52

DISLSP

DISable Limit

 of this instru
ed.

r ENLSP1 ins
ons.

task of the li
g area is perfo
to detect tran

it switch inpu

N input cap

20

t Switch Posit

uction, the po

structions to e

imit switch inp
ormed indepe
sitions

t capability to

pability t

tive

ositive limit s

enable this in

puts i.e. to pr
endently of the

o detect trans

to detect t

MPD U

switch input c

put capability

rotect against
e fact that the

itions

transition

User Manual

capability to d

y to detect hig

t accidental m
e limit switch i

ns

detect

gh-low

moves
inputs

© ElectroC

Syntax

EINT

Operands

Binary co

Descripti

Example
EI

Syntax

EN2CAPI

Operands

Binary co

Descripti

Craft 2013

6.2

s –

ode

on After t
interru
interru
MPL in

INT; //glo

6.2

I0

s –

ode

on Enable
0(low)

• Th
de

• Mo
exc
inst

• Ma
MP
enc

2.5.1.64.

E

the execution
pt flag is set
pt request is

nterrupts can

bally enab

2.5.1.65.

E

es 2nd captur
. When the fir

he input capa
etect another t

otor position A
cept the case
tead

aster position
PL variable C
coder on the l

52

EINT

Enable MPL I

n of this inst
and the inte
accepted an
be globally d

ble all MPL

EN2CAPI0

Enable 2ndCA

re/encoder in
rst transition o

ability to dete
transition

APOS_MT is
e of open-loo

APOS2 or lo
CAPPOS2, ex

load, when lo

21

INTerrupts

truction, the
rrupt is enab

nd the associ
isabled using

L interrup

0

APture Index

ndex input ca
occurs:

ect transitions

s captured an
op systems, w

oad position A
xcept the cas
oad position is

MPL interrup
bled in the int
iated interrup
g the DINT ins

pts

x 1->0

pability to de

s is disabled

d memorized
where referen

APOS_LD is
se of stepper
s captured in

MPD U

pts are globa
terrupt contro
pt service rou
struction.

etect a transit

d. It must be

d in the MPL v
nce position

captured and
rs controlled
CAPPOS.

User Manual

ally enabled.
ol register ICR
utine is called

ion from 1(hig

 enabled aga

variable CAP
TPOS is cap

d memorized
open loop w

If an
R, the
d. The

gh) to

ain to

PPOS,
ptured

in the
ith an

© ElectroC

Example

//

EN

!C

ST

WA

CP

CP

MO

TU

UP

!M

Syntax

EN2CAPI

Operands

Binary co

Descripti

Craft 2013

The se
in CAP
motor
configu

/Stop moti

N2CAPI0; /

CAP;

TOP!;//Sto

AIT!;//Wai

POS = CAPP

PA; //posi

ODE PP;

UM1; //set

PD; //exec

MC; WAIT!;

6.2

I1

s –

ode

on Enable
1(high

• Th
de

• Mo
exc
inst

election betwe
PPOS2 only

and forese
urations, the m

ion on next

//Set event

op the moti

it until th

POS; // new

ition comma

t Target Up

cute immedi

 //wait fo

2.5.1.66.

E

es 2nd captu
). When the f

he input capa
etect another t

otor position A
cept the case
tead

52

een master a
for the setup
e a transm
master positio

t 2nd enco

t: When th

ion when e

he event o

w command

and is abs

pdate Mode

iate

or completi

EN2CAPI1

Enable 2ndCA

re/encoder in
irst transition

ability to dete
transition

APOS_MT is
e of open-loo

22

nd load posit
p configuration
ission ratio
on is saved in

oder index

he 2nd enco

event occur

occurs

position =

solute

e 1

ion

APture Index

ndex input ca
occurs:

ect transitions

s captured an
op systems, w

ion is done a
ns which use
between the

n CAPPOS2.

oder index

rs

= captured

x 0->1

apability to de

s is disabled

d memorized
where referen

MPD U

s follows: loa
e different se
em. For all

x goes high

d position

etect a transit

d. It must be

d in the MPL v
nce position

User Manual

d position is s
nsors for loa

the other

h->low

tion from 0(lo

 enabled aga

variable CAP
TPOS is cap

saved
d and
setup

ow) to

ain to

PPOS,
ptured

© ElectroC

Example

//

EN

!C

ST

WA

CP

CP

MO

TU

UP

!M

Syntax

ENCAPI0

Operands

Binary co

Descripti

Craft 2013

• Ma
MP
enc

The se
in CAP
motor
configu

/Stop moti

N2CAPI1; /

CAP;

TOP!;//Sto

AIT!;//Wai

POS = CAPP

PA; //posi

ODE PP;

UM1; //set

PD; //exec

MC; WAIT!;

6.2

0

s –

ode

on Enable
0(low)

• Th
de

aster position
PL variable C
coder on the l

election betwe
PPOS2 only

and forese
urations, the m

ion on next

//Set event

op the moti

it until th

POS; // new

ition comma

t Target Up

cute immedi

 //wait fo

2.5.1.67.

E

es 1st captur
. When the fir

he input capa
etect another t

52

APOS2 or lo
CAPPOS2, ex

load, when lo

een master a
for the setup
e a transm
master positio

t 2nd enco

t: When th

ion when e

he event o

w command

and is abs

pdate Mode

iate

or completi

ENCAPI0

Enable CAPt

e/encoder ind
rst transition o

ability to dete
transition

23

oad position A
xcept the cas
oad position is

nd load posit
p configuration
ission ratio
on is saved in

oder index

he 2nd enco

event occur

occurs

position =

solute

e 1

ion

ure Index 1->

dex input cap
occurs:

ect transitions

APOS_LD is
se of stepper
s captured in

ion is done a
ns which use
between the

n CAPPOS2.

oder index

rs

= captured

>0

pability to det

s is disabled

MPD U

captured and
rs controlled
CAPPOS.

s follows: loa
e different se
em. For all

x goes low-

d position

tect a transiti

d. It must be

User Manual

d memorized
open loop w

d position is s
nsors for loa

the other

->high

ion from 1(hig

 enabled aga

in the
ith an

saved
d and
setup

gh) to

ain to

© ElectroCraft 2013 524 MPD User Manual

• Motor position APOS_MT is captured and memorized in the MPL variable CAPPOS,
except the case of open-loop systems, where reference position TPOS is captured
instead

• Master position APOS2 or load position APOS_LD is captured and memorized in the
MPL variable CAPPOS2, except the case of steppers controlled open loop with an
encoder on the load, when load position is captured in CAPPOS.

The selection between master and load position is done as follows: load position is saved
in CAPPOS2 only for the setup configurations which use different sensors for load and
motor and foresee a transmission ratio between them. For all the other setup
configurations, the master position is saved in CAPPOS2.

Example

//Stop motion on next 1st encoder index

ENCAPI0; //Set event: When the 1st encoder index goes high->low

!CAP;

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

© ElectroC

Syntax

ENCAPI1

Operands

Binary co

Descripti

Example

//

EN

!C

ST

WA

CP

CP

MO

TU

UP

!M

Craft 2013

6.2

1

s –

ode

on Enable
1(high

• Th
de

• Mo
exc
inst

• Ma
MP
enc

The se
in CAP
motor
configu

/Stop moti

NCAPI1; //

CAP;

TOP!;//Sto

AIT!;//Wai

POS = CAPP

PA; //posi

ODE PP;

UM1; //set

PD; //exec

MC; WAIT!;

2.5.1.68.

E

es 1st captur
). When the f

he input capa
etect another t

otor position A
cept the case
tead

aster position
PL variable C
coder on the l

election betwe
PPOS2 only

and forese
urations, the m

ion on next

/Set event:

op the moti

it until th

POS; // new

ition comma

t Target Up

cute immedi

 //wait fo

52

ENCAPI1

Enable CAPt

re/encoder ind
irst transition

ability to dete
transition

APOS_MT is
e of open-loo

APOS2 or lo
CAPPOS2, ex

load, when lo

een master a
for the setup
e a transm
master positio

t 1st enco

: When the

ion when e

he event o

w command

and is abs

pdate Mode

iate

or completi

25

ure Index 0->

dex input cap
occurs:

ect transitions

s captured an
op systems, w

oad position A
xcept the cas
oad position is

nd load posit
p configuration
ission ratio
on is saved in

oder index

e 1st encod

event occur

occurs

position =

solute

e 1

ion

>1

pability to de

s is disabled

d memorized
where referen

APOS_LD is
se of stepper
s captured in

ion is done a
ns which use
between the

n CAPPOS2.

der index

rs

= captured

MPD U

etect a transit

d. It must be

d in the MPL v
nce position

captured and
rs controlled
CAPPOS.

s follows: loa
e different se
em. For all

goes low->

d position

User Manual

tion from 0(lo

 enabled aga

variable CAP
TPOS is cap

d memorized
open loop w

d position is s
nsors for loa

the other

>high

ow) to

ain to

PPOS,
ptured

in the
ith an

saved
d and
setup

© ElectroC

Syntax

END

Operands

Binary co

Descripti

Example

BE

..

EN

..

EN

Syntax

ENDINIT

Operands

Binary co

Craft 2013

6.2

s –

ode

on The E
instruc
contain
cam ta
the driv

Remar
AXISO
PWM o

EGIN;

..

NDINIT;

.

ND;

6.2

s –

ode

2.5.1.69.

E

END comman
ctions (if pres
n MPL functio
ables. The EN
ve/motor in a

rk: The END
N / AXISOFF

outputs.

// Starti

 //E

 //e

2.5.1.70.

E

52

END

END of a MP

nd indicates
sent) are not
ons and MPL
ND command
 wait loop for

instruction d
F to enable / d

ing point o

End of init

end of main

ENDINIT

END of INITia

26

L program

the end of
executed. Af

L interrupt se
d effectively s
MPL comma

does not mod
disable the co

of a MPL p

tializatio

n section

alization

a MPL prog
fter this comm

ervice routines
stops the exe

ands received

dify the contr
ontrol loops, t

program

on

of a MPL p

MPD U

gram main s
mand the MP
s as well as
ecution a MP
d via a commu

rol loops. Use
the reference

program

User Manual

section. Next
PL program s
other data lik

PL program p
unication cha

e MPL comm
e generator an

MPL

should
ke the
putting
annel.

mands
nd the

© ElectroC

Descripti

Example

BE

..

EN

..

EN

Syntax

ENEEPR

Operands

Binary co

Descripti

Example

EN

Craft 2013

on The E
This co
activat
comma
Subse
execut

EGIN;

..

NDINIT;

.

ND;

6.2

OM

s –

ode

on Enable
disable
the sam
comma

The EN
in conf
comma
link wit
executi

Remar
comma

NEEPROM; /

NDINIT instru
ommand use
te the contro
and. After p
quent ENDIN
ted only after

// Starti

 //E

 //e

2.5.1.71.

ENnable

s the SPI-ba
d by the initi
me SPI link

and.

NEEPROM co
figurations w

and, the intern
th the EEPR
on of the END

rk: The ENE
ands AXISOF

/ enable E

52

uction marks
es the availab
ollers or the
power on, th
NIT comman
the ENDINIT

ing point o

End of init

end of main

ENEEPRO

e communicat

ased commu
alization of fe
as the EEP

ommand is in
with SSI or
nal SPI-link w
ROM is ena
DINIT comma

EEPROM co
FF and END w

EEPROM

27

the END of
ble setup data

PWM outpu
he ENDINIT
ds are ignor

T command.

of a MPL p

tializatio

n section

OM

tion with the E

unication with
eedback devi
PROM. This

ntended for th
EnDat encod
with the SSI o
bled. This o
and, without r

ommand mus
which stop the

the INITializa
a to perform
ts. These ar
command m

red. The firs

program

on

of a MPL p

EEPROM

h the drive/m
ices like SSI
initialization

he hosts work
ders as pos
or EnDat enc

offers access
resetting the d

st be execu
e motor contro

MPD U

ation part of
key initializat
re activated
may be exe
t AXISON c

program

motor EEPRO
or EnDat en
is done du

king with Elec
sition feedbac
coders is disa
s to the driv
drives.

uted only AF
ol and MPL p

User Manual

the MPL pro
tions, but doe
with the AX

ecuted only
command mu

OM after this
coders, whic
ring the EN

ctroCraft drive
ck. Following
abled and the
ve EEPROM

FTER issuing
program exec

gram.
es not

XISON
once.

ust be

s was
ch use
DINIT

es set
g this
e SPI-

after

g the
ution

© ElectroC

Syntax

ENIO

Operands

Binary co

Descripti

Example

EN

Syntax

ENLSN0

Operands

Binary co

Firmware

Craft 2013

6.2

s –

ode

on

NIO;

6.2

s –

ode

e version FAx

2.5.1.72.

2.5.1.73.

E

xx

52

ENIO

ENLSN0

Enable Limit

28

Switch Negat

tive 1->0

MPD UUser Manual

© ElectroCraft 2013 529 MPD User Manual

Firmware version FBxx

Description Enables negative limit switch input capability to detect a transition from 1(high) to 0(low).
When the first transition occurs:

• The input capability to detect transitions is disabled. It must be enabled again to
detect another transition

• Motor position APOS_MT is captured and memorized in the MPL variable CAPPOS,
except the case of open-loop systems, where reference position TPOS is captured
instead

• Master position APOS2 or load position APOS_LD is captured and memorized in the
MPL variable CAPPOS2, except the case of steppers controlled open loop with an
encoder on the load, when load position is captured in CAPPOS.

The selection between master and load position is done as follows: load position is saved
in CAPPOS2 only for the setup configurations which use different sensors for load and
motor and foresee a transmission ratio between them. For all the other setup
configurations, the master position is saved in CAPPOS2.

Example

//Reverse when the active low negative limit switch is reached

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.0637; //acceleration rate = 200[rad/s^2]

CSPD = -16.6667; //jog speed = -500[rpm]

MODE SP;

UPD; //execute immediate

ENLSN0;//Enable negative limit switch for high->low transitions

!LSN; //Set event on negative limit switch(high->low transition)

WAIT!;//Wait until the event occurs

!MC; // limit switch is active -> quick stop mode active

WAIT!;// wait until the motor stops because only then the new

// motion commands are accepted

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

6.2.5.1.74. ENLSN1

Syntax

ENLSN1 Enable Limit Switch Negative 0->1

© ElectroC

Operands

Binary co

Firmware

Firmware

Descripti

Example

//

//

CA

CS

MO

UP

EN

!L

Craft 2013

s –

ode

e version FAx

e version FBx

on Enable
When

• Th
de

• Mo
exc
inst

• Ma
MP
enc

The se
in CAP
motor
configu

/Reverse w

/Position

ACC = 0.06

SPD = -16.

ODE SP;

PD;

NLSN1;//En

LSN; //Se

xx

xx

es negative li
the first trans

he input capa
etect another t

otor position A
cept the case
tead

aster position
PL variable C
coder on the l

election betwe
PPOS2 only

and forese
urations, the m

when the ac

feedback:

637; //a

.6667; //j

 //e

nable negat

et event on

53

mit switch inp
sition occurs:

ability to dete
transition

APOS_MT is
e of open-loo

APOS2 or lo
CAPPOS2, ex

load, when lo

een master a
for the setup
e a transm
master positio

ctive high

500 lines

acceleratio

jog speed =

execute imm

tive limit

n negative

30

put capability

ect transitions

s captured an
op systems, w

oad position A
xcept the cas
oad position is

nd load posit
p configuration
ission ratio
on is saved in

h negative

s encoder (

on rate =

= -500[rpm

mediate

t switch fo

e limit swi

to detect a t

s is disabled

d memorized
where referen

APOS_LD is
se of stepper
s captured in

ion is done a
ns which use
between the

n CAPPOS2.

limit swi

(2000 coun

200[rad/s^

m]

or low->hi

itch(low->

MPD U

ransition from

d. It must be

d in the MPL v
nce position

captured and
rs controlled
CAPPOS.

s follows: loa
e different se
em. For all

itch is rea

nts/rev)

^2]

igh transit

>high trans

User Manual

m 0(low) to 1(

 enabled aga

variable CAP
TPOS is cap

d memorized
open loop w

d position is s
nsors for loa

the other

ached

tions

sition)

(high).

ain to

PPOS,
ptured

in the
ith an

saved
d and
setup

© ElectroCraft 2013 531 MPD User Manual

WAIT!;//Wait until the event occurs

!MC; // limit switch is active -> quick stop mode active

WAIT!;// wait until the motor stops because only then the new

// motion commands are accepted

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

© ElectroC

Syntax

ENLSP0

Operands

Binary co

Firmware

Firmware

Descripti

Example

//

//

CA

CS

Craft 2013

6.2

s –

ode

e version FAx

e version FBx

on Enable
When

• Th
de

• Mo
exc
inst

• Ma
MP
enc

The se
in CAP
motor
configu

/Reverse w

/Position

ACC = 0.06

SPD = -16.

2.5.1.75.

E

xx

xx

es positive lim
the first trans

he input capa
etect another t

otor position A
cept the case
tead

aster position
PL variable C
coder on the l

election betwe
PPOS2 only

and forese
urations, the m

when the ac

feedback:

637; //a

.6667; //j

53

ENLSP0

Enable Limit

mit switch inp
sition occurs:

ability to dete
transition

APOS_MT is
e of open-loo

APOS2 or lo
CAPPOS2, ex

load, when lo

een master a
for the setup
e a transm
master positio

ctive low

500 lines

acceleratio

jog speed =

32

Switch Positiv

put capability

ect transitions

s captured an
op systems, w

oad position A
xcept the cas
oad position is

nd load posit
p configuration
ission ratio
on is saved in

positive l

s encoder (

on rate =

= -500[rpm

ve 1->0

to detect a tr

s is disabled

d memorized
where referen

APOS_LD is
se of stepper
s captured in

ion is done a
ns which use
between the

n CAPPOS2.

limit swit

(2000 coun

200[rad/s^

m]

MPD U

ransition from

d. It must be

d in the MPL v
nce position

captured and
rs controlled
CAPPOS.

s follows: loa
e different se
em. For all

tch is reac

nts/rev)

^2]

User Manual

m 1(high) to 0

 enabled aga

variable CAP
TPOS is cap

d memorized
open loop w

d position is s
nsors for loa

the other

ched

0(low).

ain to

PPOS,
ptured

in the
ith an

saved
d and
setup

© ElectroCraft 2013 533 MPD User Manual

MODE SP;

UPD; //execute immediate

ENLSP0;//Enable positive limit switch for high->low transitions

!LSP; //Set event on positive limit switch(high->low transition)

WAIT!;//Wait until the event occurs

!MC; // limit switch is active -> quick stop mode active

WAIT!;// wait until the motor stops because only then the new

// motion commands are accepted

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

© ElectroC

Syntax

ENLSP1

Operands

Binary co

Firmware

Firmware

Descripti

Example

//

//

CA

CS

Craft 2013

6.2

s –

ode

e version FAx

e version FBx

on Enable
When

• Th
de

• Mo
exc
inst

• Ma
MP
enc

The se
in CAP
motor
configu

/Reverse w

/Position

ACC = 0.06

SPD = -16.

2.5.1.76.

E

xx

xx

es positive lim
the first trans

he input capa
etect another t

otor position A
cept the case
tead

aster position
PL variable C
coder on the l

election betwe
PPOS2 only

and forese
urations, the m

when the ac

feedback:

637; //a

.6667; //j

53

ENLSP1

Enable Limit

mit switch inp
sition occurs:

ability to dete
transition

APOS_MT is
e of open-loo

APOS2 or lo
CAPPOS2, ex

load, when lo

een master a
for the setup
e a transm
master positio

ctive high

500 lines

acceleratio

jog speed =

34

Switch Positiv

put capability

ect transitions

s captured an
op systems, w

oad position A
xcept the cas
oad position is

nd load posit
p configuration
ission ratio
on is saved in

h positive

s encoder (

on rate =

= -500[rpm

ve 0->1

to detect a tr

s is disabled

d memorized
where referen

APOS_LD is
se of stepper
s captured in

ion is done a
ns which use
between the

n CAPPOS2.

limit swi

(2000 coun

200[rad/s^

m]

MPD U

ransition from

d. It must be

d in the MPL v
nce position

captured and
rs controlled
CAPPOS.

s follows: loa
e different se
em. For all

itch is rea

nts/rev)

^2]

User Manual

m 0(low) to 1(

 enabled aga

variable CAP
TPOS is cap

d memorized
open loop w

d position is s
nsors for loa

the other

ached

(high).

ain to

PPOS,
ptured

in the
ith an

saved
d and
setup

© ElectroCraft 2013 535 MPD User Manual

MODE SP;

UPD; //execute immediate

ENLSP1;//Enable positive limit switch for low->high transitions

!LSP; //Set event on positive limit switch(low->high transition)

WAIT!;//Wait until the event occurs

!MC; // limit switch is active -> quick stop mode active

WAIT!;// wait until the motor stops because only then the new

// motion commands are accepted

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

© ElectroC

Syntax

EXTREF

Operands

Binary co

Descripti

Example

EX

Craft 2013

6.2

value

s value:

ode

on Sets th

• val
var

• val

• val
sig

XTREF 1;

2.5.1.77.

S

type of refere

he external re

ue = 0: onlin
riables EREFP

ue = 1: analo

ue = 2: digit
nals

// the ex

// input d

53

EXTREF

Set EXTernal

ence 0, 1 or 2

eference type

e – the refer
P, EREFS, E

ogue – the refe

al – the refe

xternal ref

dedicated

36

 REFerence t

2

depending o

rence is sent
REFT, EREF

erence is rea

erence is pro

ference is

for this p

type

n the parame

via a commu
FV function of

ad from a ded

ovided as pul

s read from

purpose

MPD U

eter value:

unication cha
f the control m

icated analog

lse & directio

m the anal

User Manual

annel in one
mode

gue input

on or encode

logue

of the

er like

© ElectroC

Syntax

FAULTR

Operands

Binary co

Descripti

Example

FA

Syntax

GOTO La

GOTO Va

GOTO VA

GOTO La

GOTO Va

GOTO VA

Operands

Craft 2013

6.2

s –

ode

on Gets ou
After a
Ready
error le

Remar

• The
disa
inpu

• The
com

AULTR;

6.2

abel

alue16

AR16

abel, VAR, Fla

alue16, VAR,

AR16, VAR, F

s Label:

Value1

VAR16

VAR: 1

2.5.1.78.

F

ut the drive/m
FAULTR co
output (if pre

evel.

rks:

e FAULT rese
abled level), M
ut active) and

e drive/motor
mmand is exe

// reset

2.5.1.79.

U

U

U

ag G

Flag G

Flag G

a label provid

16: immediate

6: integer vari

16 or 32-bit M

53

FAULTR

FAULT Rese

motor from the
ommand, mos
esent) is set

et command
MER.7 (nega
d MER.2 (inva

r will return t
ecuted

fault stat

GOTO

Unconditiona

Unconditiona

Unconditiona

GOTO Label

GOTO Value

GOTO addre

ding the 16-b

e 16-bit jump

iable containi

MPL test varia

37

t

e FAULT sta
st of the erro
to ready leve

does not cha
ative limit swit
alid setup tabl

to FAULT sta

tus

l GOTO to La

l GOTO to Va

l GOTO to ad

if VAR Flag 0

16 if VAR Fla

ss set in Var1

it value of a ju

address

ng the jump a

able compared

tus in which
or bits from M
el, the Error

ange the statu
tch input activ
le)

atus if there

abel

alue16

ddress stored

0

ag 0

16Addr if VAR

ump address

address

d with 0

MPD U

it enters whe
MER are clea

output (if pre

us of MER.15
ve), MER.6 (p

are errors w

d in VAR16Ad

R16 Flag 0

User Manual

en an error oc
ared (set to 0
esent) is set

5 (enable inp
positive limit s

when the FA

ddr

ccurs.

0), the
to no

put on
switch

ULTR

© ElectroC

Binary co

Descripti

Craft 2013

Flag: o

ode

on Execute
address
variable
conditio
comma
test co
compar

one of the con

es a jump to
s is provided
e. The jump
on is tested.
and is carried
ndition added
red with zero.

53

nditions: EQ,

the MPL pro
d via a label
p can be un

If the cond
out. The con

d after the la
. The possible

38

NEQ, LT, LE

ogram positio
, an immedia
conditional o
ition is true

ndition is spec
abel with the
e test conditio

EQ if

NEQ if

LT if

LEQ if

GT if

GEQ if

Q, GT, GEQ

on specified v
ate value or
or unconditio
the jump is

cified by a 16
jump addres

ons are:

VAR = 0

VAR ≠ 0

VAR < 0

VAR ≤ 0

VAR > 0

VAR ≥ 0

MPD U

via the jump a
by the value

onal. In a co
executed, e

6-bit or 32-bit
ss. The test

User Manual

address. The
e of a 16-bit
onditional jum
else the next
test variable
variable is a

e jump
t MPL
mp, a
 MPL
and a

always

© ElectroCraft 2013 539 MPD User Manual

Example

GOTO label1, var1, LT; // jump to label1 if var1 < 0

GOTO label2, var1, LEQ; // jump to label2 if var1 <= 0

GOTO label3, var1, GT; // jump to label3 if var1 > 0

GOTO label4; // unconditional jump to label4

GOTO var_address; // unconditional jump to jumps address

// provided by var_address value

© ElectroC

Syntax

GROUPID

Operands

Binary co

Descripti

Example

GR

..

[G

Craft 2013

6.2

D (value_1, v

s value_

ode

on The co
multica
messa
commo
group
The gr
bit 1 –

After th

•

•

•

•

ROUPID (1,

..

G3] {STOP;

2.5.1.80.

alue_2,…) Se

_1, value_2: s

ommand sets
ast transmiss
age group ID
on, the mess
3, it will recei

roup ID is an
group 2… bit

he execution

Bit 0 is set

Bit 1 is set

…

Bit 7 is set

 3); //l

} //s

54

GROUPID

et GROUP ID

specify a grou

s the group
sion. When a
with its own g

sage is accep
ve all the me
8-bit integer v
t 7 – group 8.

of this comm

to 1, if (group

to 1, if (group

to 1, if (group

local axis

send stop c

//the co

40

D address

up number be

ID. On each
multicast me

group ID. If th
pted. For exa
ssages sent w
value. Each b

and, the grou

p) 1 occurs in

p) 2 occurs in

p) 8 occurs in

belongs t

command to

ommand is

tween 1 and

axis, the gro
essage is rec
he two group
ample, if an a
with a group
bit correspond

up ID value is

the parenthe

the parenthe

the parenthe

to groups 1

o all axes

executed b

MPD U

8

oup ID repre
ceived, each
p IDs have at
axis is memb
ID including g
ds to one gro

s set as follow

esis, else it is

esis, else it is

esis, else it is

1 and 3

from grou

by local a

User Manual

sents a filter
axis compare
least one gro

ber of group
group 1 or gro
up: bit 0 – gro

ws:

set to 0

set to 0

set to 0.

up 3

xis too

r for a
es the
oup in
1 and
oup 3.
oup 1,

© ElectroC

Syntax

INITCAM

Operands

Binary co

Descripti

Example

IN

Craft 2013

6.2

 LoadAddres

s LoadA

RunAdd

ode

on Prepare
memor
INITCA
RAM m
cam tab
where
CAMST

NITCAM 188

2.5.1.81.

s, RunAddres

ddress: 16-bi

dress: 16-bit u

es a cam tab
y of the driv

AM command
memory. The
ble was down
to copy the

TART takes t

64,2560;

54

INITCAM

ss Copy cam

t unsigned in

unsigned inte

ble for use. T
ve/motor, tog
 a cam table
LoadAddress
nloaded and t
cam table. A
he value of th

//Copy

//(addre

//(addre

41

m table from E

teger - cam ta

eger - cam tab

The cam tab
gether with t
is copied from

s is the start a
the RunAddre
After the exe
he RunAddres

CAM table

ess 0x49B0)

ess 0xA00)

EEPROM to R

able start add

ble start addre

les are first d
he rest of th
m the EEPRO
address in th

ress is the sta
ecution of thi
ss

e from EEPR

) to RAM m

MPD U

RAM

dress in the E

ess in the RA

downloaded
he MPL prog
OM memory in
e EEPROM m

art address in
is command

ROM memory

memory

User Manual

EEPROM

AM

into the EEP
gram. Then
nto the drive/
memory whe

n the RAM me
the MPL va

y

PROM
using

/motor
re the
emory
ariable

© ElectroC

Syntax

LOCKEE

Operands

Binary co

Descripti

Example

//

//

LO

LO

LO

LO

Craft 2013

6.2

PROM value

s value1

ode

on Locks o
is not p
SAVE.

/An EEPROM

/address r

OCKEEPROM

OCKEEPROM

OCKEEPROM

OCKEEPROM

2.5.1.82.

16 LOCK/u

16: integer val

or unlocks the
possible to w
Value16 may

0 – Disables

1 – Enables

2 – Enables

3 – Enables

M has 8Kwor

ange: 4000

0; // disa

1; // prot

2; // prot

3; // prot

54

LOCKEEP

nlock EEPRO

lue between 0

e EEPROM w
rite data into
y have the fol

 EEPROM wr

write protecti

write protecti

write protecti

rds. In the

0-5FFFh.

able EEPROM

tect the ad

tect the ad

tect the en

42

PROM

OM

0 and 3

write protectio
the EEPROM

lowing values

rite protection

on for the las

on for the las

on for the ent

e MPL prog

M write pr

ddress ran

ddress ran

ntire addr

on. When the
M, with the e
s:

n

st quarter of th

st half of the E

tire EEPROM

gram space

rotection

nge: 5800-5

nge: 5000-5

ress range:

MPD U

e EEPROM is
exception of t

he EEPROM

EEPROM

M

occupies

5FFFh,

5FFFh

: 4000-5FF

User Manual

s write-protec
he MPL com

the

FFh

cted, it
mmand

© ElectroC

Only avai

Syntax

LPLANE

Operands

Binary co

Descripti

Example

// 2D

//incr

 SETMOD

 LPLANE

 MODE L

 // Inc

 LPOS1

 UPD; /

 // Inc

 LPOS1

 // Inc

 LPOS1

 // Inc

 LPOS1

Craft 2013

6.2

lable on multi

(X_axis, Y_a

s X_axis

ode

on Sets th
specifie

linear in

remental e

DE 0xCF00;

E (A, C);

LI; // Set

crement po

1000L, 10

//Execute

crement po

100L, 100

crement po

1000L, 20

crement po

1000L, 10

2.5.1.83.

i-axis Motion

axis, Z_axis)

s, Y_axis, Z_a

he 2D/3D co
ed with X_axis

nterpolated

encoder

; //Clear b

//Slaves

t Linear In

osition wit

00L; LPOS2

immediate

osition wit

00L; LPOS2

osition wit

00L; LPOS2

osition wit

000L; LPOS2

54

LPLANE

Controller

Linear in

axis: slave ax

oordinate sys
s, Y_axis and

d profile.

buffer

A and C de

nterpolati

th (X, Y)

1000L, 10

th (X, Y)

100L, 100

th (X, Y)

1000L, 20

th (X, Y)

2 1000L, 1

43

terpolation P

xes defining th

stem for Lin
d Z_axis.

 Position

efine the

ion Mode

= (0.5[rot

00L;

= (0.05[ro

00L;

= (0.5[rot

00L;

= (0.5[rot

1000L;

LANE

he coordinate

near Interpola

feedbacks

coordinate

t], 0.05[r

ot], 0.5[r

t], 0.1[ro

t], 0.5[ro

MPD U

e system

ation Mode

s: 500 line

e system

rot])

rot])

ot])

ot])

User Manual

using slave

es

axes

© ElectroC

Only avai

Syntax

LPOS1 P

LPOS2 P

LPOS1 P

LPOS2 P

Operands

Binary co

Craft 2013

6.2

lable on multi

Pos_X, Pos_Y

Pos_X, Pos_Y

Pos_X, Pos_Y

Pos_X, Pos_Y

s Pos_X

Pos_Y

Pos_Z

ode

2.5.1.84.

i-axis Motion

Y, Pos_Z

Y, Pos_Z

Y

Y

X: X axis posit

Y: Y axis posit

Z : Z axis posit

54

LPOS

Controller

3D Linea

2D Linea

tion incremen

tion incremen

tion incremen

44

ar interpolatio

ar interpolatio

nt for 2D/3D tr

nt for 2D/3D tr

nt for 3D traje

on POS segm

on POS segm

rajectory

rajectory

ectory

MPD U

ment

ment

User Manual

© ElectroCraft 2013 545 MPD User Manual

Description LPOS1 and LPOS2 define a segment for 2D/3D trajectory executed in Linear Interpolation
mode. Based on Pos_X, Pos_Y and Pos_Z the MPL compiler from MotionPRO Developer
computes the actual parameters used by the motion controller to generate the PVT points
for slave axes.

If the points are sent from a host then the following relations must be used to compute the
actual parameters of the segment:

Example

// 2D linear interpolated profile. Position feedbacks: 500 lines

© ElectroCraft 2013 546 MPD User Manual

//incremental encoder

 SETMODE 0xCF00; //Clear buffer

 LPLANE (A, C); //Slaves A and C define the coordinate system

 MODE LI; // Set Linear Interpolation Mode

 // Increment position with (X, Y) = (0.5[rot], 0.05[rot])

 LPOS1 1000L, 100L; LPOS2 1000L, 100L;

 UPD; //Execute immediate

 // Increment position with (X, Y) = (0.05[rot], 0.5[rot])

 LPOS1 100L, 1000L; LPOS2 100L, 1000L;

 // Increment position with (X, Y) = (0.5[rot], 0.1[rot])

 LPOS1 1000L, 200L; LPOS2 1000L, 200L;

 // Increment position with (X, Y) = (0.5[rot], 0.5[rot])

 LPOS1 1000L, 1000L; LPOS2 1000L, 1000L;

© ElectroC

Syntax

MODE CS

Operands

Binary co

Descripti

Example

//

//

CA

EX

CA

CA

CA

MA

MO

TU

SR

UP

Craft 2013

6.2

S

s –

ode

on Sets th
drive/m
master
X is c
corres
interpo

The ne

/ Electron

/ encoder

AMSTART =

XTREF 2; /

AMOFF = 20

AMX = 0.5;

AMY = 1.5;

ASTERRES =

ODE CS; //

UM1; //Set

RB ACR, 0x

PD; //exec

2.5.1.85.

S

he drive/moto
motor perform
r position. Th

cam table inp
ponding slav

olation.

ew motion mo

nic camming

inputs. Ma

0xF000; //

/ master p

0; //Cam o

 //Cam inp

 //Cam out

 2000; //

Set electr

 Target Up

EFFF, 0x00

ute immedi

54

MODE CS

Set axis in MO

or to operate
ms a position c

e cam profile
put i.e. the m
ve position.

ode becomes

g slave. M

aster resol

/Initialize

position re

offset from

put correct

tput correc

master res

ronic cammi

pdate Mode

000; //Camm

iate

47

ODE Cammin

in the electro
control with r

e is defined by
master positio

Between the

effective at th

Master posi

lution: 20

e CAM tabl

ead from P

m master

tion facto

ction fact

solution

ing slave

1

ming mode:

ng Slave

onic camming
reference set
y a cam table
on and Y is
e points the

he next upda

ition is r

000 counts/

le start ad

P&D or 2nd

or

tor

mode

: Relative

MPD U

g slave mode
by a cam pro

e – a set of (X
the cam tab
drive/motor

ate command

read from 2

/rev

ddress

encoder

User Manual

e. In this mod
ofile function
X, Y) points, w
ble output i.e
performs a

UPD.

2nd

e, the
of the
where
e. the
linear

© ElectroC

Syntax

MODE GS

Operands

Binary co

Descripti

Example

//
ch

//

GE

GE

GE

EX

MA

RE

MO

TU

SR

CA

UP

Craft 2013

6.2

S

s –

ode

on Sets th
perform
ratio. A
increme
referen
slave p

The new

/Electroni
hannel inp

/ On slave

EAR = 0.33

EARMASTER

EARSLAVE =

XTREF 0; /

ASTERRES =

EG_ON; //E

ODE GS; //

UM1; //Set

RB UPGRADE

ACC = 0.95

PD; //exec

2.5.1.86.

S

he drive/moto
ms a position
At each slow
ent and multi
ce increment
osition refere

w motion mod

ic gearing
puts. Maste

e axis (Axi

33; // gea

= 3; //gea

 1; //gear

/ master p

 2000; //

nable supe

Set as sla

 Target Up

, 0xFFFF,

49; //Limi

ute immedi

54

MODE GS

Set axis in MO

or to operate
 control and

w loop samp
plies it with it
t, which adde

ence.

de becomes e

g. Master
er resolut

is ID = 1)

ar ratio

ar ratio de

r ratio num

position go

master res

erposition

ave, positi

pdate Mode

0x0004; //

it maximum

iate

48

ODE Gear Sl

in the elect
follows the

pling period,
ts programme
ed to the prev

effective at th

position
tion: 2000

:

enominator

merator

ot via com

solution

ion mode

1

/UPGRADE.2

accelerat

ave

ronic gearing
master posit
the slave c

ed gear ratio.
vious slave po

he next updat

is receiv
counts/re

r

mmunication

2 = 1

tion at 300

MPD U

g slave mode
tion with a pr
computes the
 The result is
osition refere

te command U

ved via //
ev

n channel

00[rad/s^2

User Manual

e. The drive/
rogrammable
e master po
s the slave po
ence gives the

UPD.

/communica

2]

/motor
e gear
osition
osition
e new

ation

© ElectroC

Only avai

Syntax

MODE LI

Operands

Binary co

Descripti

Example

// 2D

//incr

 SETMOD

 LPLANE

 MODE L

 // Inc

 LPOS1

 UPD; /

 // Inc

 LPOS1

Craft 2013

6.2

lable on multi

s –

ode

on Sets th
controll
configu

The pa
receive

Each s
interpo
segmen
in Quic

linear in

remental e

DE 0xCF00;

E (A, C);

LI; // Set

crement po

1000L, 10

//Execute

crement po

100L, 100

2.5.1.87.

i-axis Motion

e motion con
ler generates

ured with SET

ath segments
ed via a comm

segment is s
lation, rebuild
nt. If the sequ
kstop mode a

nterpolated

encoder

; //Clear b

//Slaves

t Linear In

osition wit

00L; LPOS2

immediate

osition wit

00L; LPOS2

54

MODE LI

Controller

MODE L

ntroller to ope
s a 2D/3D tra
TMODE comm

can be store
munication cha

split in PVT
d the trajecto
uence doesn’
and the stops

d profile.

buffer

A and C de

nterpolati

th (X, Y)

1000L, 10

th (X, Y)

100L, 100

49

inear Interpo

rate in linear
ajectory base
mand.

ed in the non
annel from a

points and s
ory. The seg
’t have an en
 the slaves.

 Position

efine the

ion Mode

= (0.5[rot

00L;

= (0.05[ro

00L;

lation mode

interpolation
ed on linear s

n-volatile mem
host.

sent to the s
gments seque
nd segment th

feedbacks

coordinate

t], 0.05[r

ot], 0.5[r

MPD U

 mode. In this
segments. Th

mory of the m

slaves which
ence must fi
hen the motio

s: 500 line

e system

rot])

rot])

User Manual

s mode the m
he motion mo

motion contro

h, using 3rd
inish with the
on controller e

es

motion
ode is

ller or

order
e end
enters

© ElectroCraft 2013 550 MPD User Manual

 // Increment position with (X, Y) = (0.5[rot], 0.1[rot])

 LPOS1 1000L, 200L; LPOS2 1000L, 200L;

 // Increment position with (X, Y) = (0.5[rot], 0.5[rot])

 LPOS1 1000L, 1000L; LPOS2 1000L, 1000L;

© ElectroC

Syntax

MODE PC

Operands

Binary co

Descripti

Example

//

//

MO

TU

SE

UP

SE

SE

Syntax

MODE PE

Operands

Craft 2013

6.2

C

s –

ode

on Sets th
an arb
interpo
segme
path re

The ne

e

/ Position

/ incremen

ODE PC;//S

UM1;//Star

EG 100U, 2

PD; //Exec

EG 100U, 0

EG 0, 0.0;

6.2

E

s –

2.5.1.88.

M

he drive/moto
bitrary path
olation is per
ents. In the po
epresents a p

ew motion mo

 contourin

ntal encode

Set Positio

rt from act

20.00000;//

cute immedi

0.00000; //

; //End of

2.5.1.89.

M

55

MODE PC

MODE Positio

or to operate i
is described

rformed, lead
osition contou

position refere

ode becomes

ng with pos

er (2000 c

on Contour

tual value

/ 1st poin

iate

/ 2nd poin

contourin

 MODE PE

MODE Positio

51

on Contouring

n the position
d via a seri
ding to a co
uring, the driv
ence.

effective at th

sition fee

counts/rev)

ring

e of positi

nt

nt

ng

E

on External

g

n contouring m
ies of points
ntour describ
ve/motor perf

he next upda

edback on m

)

ion refere

MPD U

mode. In the
s. Between
bed by a su
forms a positi

ate command

motor: 500

ence

User Manual

contouring m
the points,
ccession of
ion control an

UPD.

0 lines

modes,
linear
linear

nd the

© ElectroC

Binary co

Descripti

Example

Syntax

MODE PP

Operands

Binary co

Craft 2013

ode

on Sets th
drive/m
device.
EXTRE

• Ana

•

You ca
to redu
the max

The new

e
//Read

EXTREF

MODE P

CSPD =

SRB UP

UPD; /

6.2

P

s –

ode

he drive/mot
motor perform

 There are
EF):

alogue – read

Online – rec
the MPL var

an limit the m
ce the mecha
ximum speed

w motion mod

d position

F 1;

PE; //Exte

= 100;// L

PGRADE, 0x

//execute

2.5.1.90.

M

55

tor to operat
s a position
2 types of e

d from a dedic

ceived online
riable EREFP

aximum spee
anical shocks
d value in CSP

de becomes e

n command f

rnal posit

Limit = 300

xFFFF, 0x00

immediate

MODE PP

MODE Positio

52

te in the po
control with

external refer

cated analogu

 via a comm
P

ed at sudden
s. This feature
PD.

effective at th

from the a

tion

00[rpm]

004; //UPG

on Profile

osition extern
the position

rences (selec

ue input (MPL

unication cha

changes of t
e is activated

he next updat

nalogue re

GRADE.2 = 1

MPD U

nal mode. I
reference pr

ctable via th

L variable AD

annel from a

the position r
d by setting U

te command U

eference i

1

User Manual

n this mode
rovided by an
e MPL instru

D5)

host and sav

reference and
PGRADE.2=

UPD.

nput

e, the
nother
uction

ved in

d thus
1 and

© ElectroC

Descripti

Example

//

//

CA

CS

CP

CP

SR

MO

TU

UP

!M

Syntax

MODE PS

Operands

Binary co

Descripti

Craft 2013

on Sets th
drive/m
positio
specify
mode,

The ne

e

/ Position

/ encoder

ACC = 0.31

SPD = 33.3

POS = 6000

PR; //pos

RB ACR 0xF

ODE PP; //

UM1; //set

PD; //exe

MC; WAIT!;

6.2

SC

s –

ode

on Sets th
perform
with an
trapezo
You sp
mode,
rate an
time ne

he drive/moto
motor perform
on profile with
y either a po
plus the slew

ew motion mo

n profile.

(2000 coun

183; //a

3333; //s

0; //p

ition comm

FFFF, 0x800

/ set trape

t Target Up

ecute immed

 //wait fo

2.5.1.91.

M

he drive/moto
ms a position
n S-curve sha
oidal or triang
pecify either a

plus the sle
nd the jerk rat
eeded to reac

55

or to operate
ms a position
h a trapezoida
osition to reac
w (maximum t

ode becomes

Position

nts/rev)

acceleratio

slew speed

position co

mand is re

0; // and

ezoidal po

pdate Mode

diate

or completi

MODE PSC

MODE Positio

or to operate i
n control. The
ape of the sp
gular profile f
a position to r
ew (maximum
te. The jerk ra
ch the maxim

53

in the trapezo
n control. Th
al shape of th
ch in absolut
travel) speed

effective at th

feedback:

on rate =

= 1000[rp

ommand = 3

lative

additive

osition pro

 1

ion

C

on S-curve

in the S-curve
e built-in refer
peed. This sha
for the accele
reach in abso
m travel) spe
ate is set indi
um accelerat

oidal position
he built-in ref
he speed, du
te mode or a
and the acce

he next upda

500 lines

1000[rad/s

pm]

3[rot]

ofile mode

e profile mod
rence genera
ape is due to
eration and a
olute mode or
ed, the maxi
irectly via the
tion starting fr

MPD U

 profile mode
ference gene
e to a limited
a position inc
eleration/dece

ate command

s increment

s^2]

e

e. In this mod
ator computes
o the jerk limit
n S-curve pro
r a position in
imum accele

e jerk time, wh
rom zero

User Manual

e. In this mod
erator compu
d acceleration
crement in re
eleration rate.

UPD.

tal

de, the drive/
s a position p
tation, leadin
ofile for the s
crement in re

eration/decele
hich represen

e, the
utes a
n. You
elative
.

/motor
profile
g to a

speed.
elative
eration
nts the

© ElectroC

Example

//

//

TJ

CA

CS

CP

CP

MO

SR

UP

!M

Syntax

MODE PT

Operands

Binary co

Descripti

Craft 2013

The ne

e

/ S-curve

/ encoder

JERK = 50;

ACC = 0.31

SPD = 33.3

POS = 2000

PR; //posi

ODE PSC; /

RB ACR, 0x

PD; //exec

MC; WAIT!;

6.2

T

s –

ode

on Sets th
a posit
series
data. B

The ne

ew motion mo

profile. P

(2000 coun

;//jerk = 2

183;//accel

3333;//slew

00;//positi

ition comma

// set S-cu

xFFFE, 0x00

cute immedi

 //wait fo

2.5.1.92.

M

he drive/moto
tion control. T
of points. Ea

Between the P

ew motion mo

55

ode becomes

Position f

nts/rev)

2e+004[rad

leration r

w speed =

ion comman

and is rel

urve profi

000; //Sto

iate

or completi

MODE PT

MODE Positio

or to operate
The built-in re
ach point spe
PT points the

ode becomes

54

effective at th

feedback: 5

d/s^3]

rate = 1000

1000[rpm]

nd = 10[rot

lative

ile mode

op using an

ion

on Time

in the PVT m
eference gen

ecifies the des
reference ge

effective at th

he next upda

500 lines

0[rad/s^2]

t]

n S-curve

mode. In this m
nerator comp
sired Position

enerator perfo

he next upda

MPD U

ate command

incrementa

profile

mode, the dri
utes a positio
n, and Time,
orms a linear

ate command

User Manual

UPD.

al

ive/motor per
oning path us
i.e. contains
interpolation.

UPD.

rforms
sing a
 a PT

© ElectroCraft 2013 555 MPD User Manual

Example

// PT sequence. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

SETPVT 0xC000; //Clear PT buffer, disable counter check

//Don’t change counter & buffer low condition

MODE PT; // Set PT Mode

TUM1;//Start from actual value of position reference

CPR;

PTP 2000L, 100U, 0; //PT(1[rot], 0.1[s])

UPD; //Execute immediate

PTP 0L, 100U, 0; //PT(1[rot],0.2[s])

PTP -2000L, 100U, 0; //PT(0[rot],0.3[s])

!MC; WAIT!; //wait for completion

© ElectroC

Syntax

MODE PV

Operands

Binary co

Descripti

Example

//

//

MA

SE

MO

TU

CP

PV

UP

PV

!M

Craft 2013

6.2

VT

s –

ode

on Sets th
a posit
series
contain
order i

The ne

e

/ PVT sequ

/ encoder

ASTERID =

ETPVT 0xC0

ODE PVT; /

UM1;//Star

PR; // Rel

VTP 400L,

PD; //Exec

VTP 400L,

MC; WAIT!;

2.5.1.93.

M

he drive/moto
tion control. T
of points. E

ns a PVT da
nterpolation.

ew motion mo

uence. Posi

(2000 coun

4081; // S

000; //C

//Do

// Set PVT

rt from act

lative mode

60, 10U, 0

cute immedi

0, 10U, 0;

 //wait fo

55

MODE PVT

MODE Positio

or to operate
The built-in re
Each point s
ata. Between

ode becomes

ition feed

nts/rev)

Set host a

Clear PVT b

on’t chang

Mode

tual value

e

0;//PVT(0.

iate

;//PVT(0.4

or completi

56

T

on Velocity Ti

in the PVT m
eference gen
specifies the
the PVT poi

effective at th

dback: 500

address to

buffer, di

e counter

e of positi

2[rot], 18

4[rot], 0[r

ion

ime

mode. In this m
nerator comp

desired Pos
nts the refere

he next upda

lines inc

255 (255<

isable coun

& buffer

ion refere

800[rpm],

rpm], 0.02

MPD U

mode, the dri
utes a positio
sition, Veloc
ence generat

ate command

cremental

<<4+1)

nter check

low condit

ence

0.01[s])

2[s])

User Manual

ive/motor per
oning path us
ity and Time
tor performs

UPD.

k

tion

rforms
sing a
e, i.e.
a 3rd

© ElectroC

Syntax

MODE SC

Operands

Binary co

Descripti

Example

//

//

MO

TU

SE

UP

SE

SE

Craft 2013

6.2

C

s –

ode

on Sets th
can p
interpo
segme
path re

The new

/ Speed co

/ incremen

ODE SC;//S

UM1;//Star

EG 100U, 2

PD; //Exec

EG 100U, 0

EG 0, 0.0;

2.5.1.94.

M

he drive/moto
rogram an a

olation is per
ents. In the s
epresents a s

w motion mod

ntouring w

ntal encode

Set Speed C

rt from act

20.00000;//

cute immedi

0.00000; //

; //End of

55

MODE SC

MODE Speed

or to operate
arbitrary path
rformed, lead
speed contou
peed referen

de becomes e

with positi

er (2000 c

Contouring

tual value

/ 1st poin

iate

/ 2nd poin

contourin

57

d Contouring

in speed con
h via a ser
ding to a co
uring, the driv
ce.

effective at th

ion feedba

counts/rev)

g

e of positi

nt

nt

ng

ntouring mode
ies of points
ntour describ
ve/motor perf

he next updat

ack on moto

)

ion refere

MPD U

e. In the conto
s. Between
bed by a su
forms a spee

te command U

or: 500 li

ence

User Manual

ouring modes
the points,
ccession of
ed control an

UPD.

ines

s, you
linear
linear

nd the

© ElectroC

Syntax

MODE SE

Operands

Binary co

Descripti

Example

//

//

//

ER

EX

MO

CA

SR

UP

Craft 2013

6.2

E

s –

ode

on Sets th
perform
2 types

• Ana

•

You ca
thus to
and the

The new

/ External

/ Position

/ encoder

REFS = 33.

XTREF 0;

ODE SE; //

ACC = 0.31

RB UPGRADE

PD; //exec

2.5.1.95.

M

e drive/motor
ms a speed co
s of external re

alogue – read

Online – rec
the MPL var

an limit the m
reduce the m

e maximum ac

w motion mod

l mode onli

n feedback:

(2000 coun

.3333;// ER

/External s

183;// Limi

E, 0xFFFF,

ute immedi

55

MODE SE

MODE Speed

r to operate in
ontrol with the
eferences (se

d from a dedic

ceived online
riable EREFS

aximum acce
mechanical sh
cceleration va

de becomes e

ine. Read

: 500 line

nts/rev)

REFS initi

speed

it = 1000[

0x0004; /

iate

58

d External

n the speed e
e speed refer
electable via t

cated analogu

 via a comm
S

eleration at s
hocks. This fe
alue in CSPD

effective at th

speed refe

es incremen

ial = 1000[

[rad/s^2]

//UPGRADE.2

external mod
rence provide
the MPL instr

ue input (MPL

unication cha

udden chang
eature is activ
D.

he next updat

erence fro

ntal

[rpm]

2 = 1

MPD U

e. In this mod
ed by another
ruction EXTR

L variable AD

annel from a

ges of the spe
vated by settin

te command U

om variable

User Manual

de, the drive/
r device. Ther
EF):

D5)

host and sav

eed referenc
ng UPGRAD

UPD.

e EREFS

/motor
re are

ved in

e and
E.2=1

© ElectroC

Syntax

MODE SP

Operands

Binary co

Descripti

Example:

//

//

C

C

M

U

Craft 2013

6.2

P

s –

ode

on Sets t
drive/m
profile

The ne

:

/ Position

/ encoder

CACC = 0.3

CSPD = 6.6

MODE SP;

UPD;

2.5.1.96.

M

he drive/moto
motor perform

with a trapez

ew motion mo

n feedback:

(2000 coun

183; //a

667; //j

 //

 //e

55

MODE SP

MODE Speed

or to operate
ms a speed co
zoidal shape,

ode becomes

: 500 line

nts/rev)

acceleratio

jog speed =

set speed

execute imm

59

d Profile

e in trapezoi
ontrol. The bu
due to a limit

effective at th

es incremen

on rate =

= 200[rpm]

profile m

mediate

dal speed p
uilt-in referenc
ted accelerati

he next upda

ntal

1000[rad/s

mode

MPD U

rofile mode.
ce generator
on

ate command

s^2]

User Manual

In this mode
computes a s

UPD.

e, the
speed

© ElectroC

Syntax

MODE TC

Operands

Binary co

Descripti

Example

//

MO

RE

SE

UP

SE

SE

SE

SE

SE

SE

Craft 2013

6.2

C

s –

ode

on Sets th
can p
interpo
segme
path re

Remar
phase

The new

/ current

ODE TC;

EF0 = 992;

EG 2999U,

PD;

EG 1U, 0.0

EG 1999U,

EG 1U, 0.2

EG 2999U,

EG 1U, -0.

EG 0, 0.0;

2.5.1.97.

M

he drive/moto
rogram an a

olation is per
ents. In the to
epresents a c

rk: The torqu

w motion mod

scaling: 1

 //S

 //I

0.06601;

 //E

3745;

0.29800;

8970;

-0.26468;

22781;

 //E

56

MODE TC

MODE Torqu

or to operate
arbitrary path
rformed, lead
orque contou

current referen

ue contouring

de becomes e

1A = 1984 I

Set Torque

Initial ref

Execute imm

End of cont

60

e Contouring

in torque con
h via a ser
ding to a co
uring, the driv
nce.

g mode has b

effective at th

IU

Contourin

ference se

mediate

touring

g

ntouring mode
ies of points
ntour describ
ve/motor perf

been foresee

he next updat

ng

et to 0.5[A

MPD U

e. In the cont
s. Between
bed by a su
forms a torqu

en for testing

te command U

A]

User Manual

ouring modes
the points,
ccession of
ue control an

g during the

UPD.

s, you
linear
linear

nd the

setup

© ElectroC

Syntax

MODE TE

MODE TE

Operands

Binary co

Descripti

Example

//

EX

MO

UP

Craft 2013

6.2

EF

ES

s –

ode

on Sets th
perform
2 types

• Ana

•

When t
done in

• MO

• MO

When t
MODE

The new

/Set torqu

XTREF 1;

ODE TEF;

PD;

2.5.1.98.

M

M

e drive/motor
ms a torque c
s of external re

alogue – read

Online – rec
the MPL var

the current re
n 2 ways:

ODE TES – at

ODE TEF – at

the current re
TES is possi

w motion mod

e mode wit

 //

 //E

 //e

56

MODE TEF

MODE Torqu

MODE Torqu

r to operate in
ontrol with a
eferences (se

d from a dedic

ceived online
riable EREFT

eference is re

t each slow lo

t each fast loo

eference is re
ble.

de becomes e

th referenc

external t

External to

execute imm

61

F

e External Fa

e External Sl

n the torque e
current refere

electable via t

cated analogu

 via a comm
T

ad from the a

oop sampling

op sampling p

eceived onlin

effective at th

ce read fr

type: anal

orque, upd

mediate

ast

ow

external mod
ence provide
the MPL instr

ue input (MPL

unication cha

analogue inpu

period

period

ne via a comm

he next updat

rom an anal

logue input

date in fas

MPD U

e. In this mod
ed by another
ruction EXTR

L variable AD

annel from a

ut, the referen

munication ch

te command U

logue inpu

t

st loop

User Manual

de, the drive/
r device. Ther
EF):

D5)

host and sav

nce update c

hannel only o

UPD.

ut

/motor
re are

ved in

can be

option

© ElectroC

Syntax

MODE TT

Operands

Binary co

Descripti

Example

//

//

//

//

MO

RE

RI

TH

TI

UP

Craft 2013

6.2

T

s –

ode

on Sets th
be set
exampl
referen
“open-l
mode is
informa
connec

Remar
phase.

The new

/Torque te

/peak curr

/360° elec

/ fast loo

ODE TT; //

EFTST_A =

INCTST_A =

HTST = 0;/

INCTST = 7

PD; //upda

2.5.1.99.

M

e drive/motor
using a tes

le the brushle
ce vector with
oop” mode w
s the possibil
ation about
ctions.

rk: The torque
It is not inten

w motion mod

est mode, b

rent 16.5A

tric angle

op sampling

/Torque Tes

1984;//Ref

= 20;//Refe

//Electric

7;//Electri

te immedia

56

MODE TT

MODE Torqu

r to operate in
t reference c

ess motors), t
h a programm
without using
ity to conduct
the motor p

e test mode h
nded for norm

de becomes e

brushless

-> 32736

e -> 65536

g period =

st Mode

ference sa

erence inc

angle = 0

ic angle i

ate

62

e Test

n torque test
consisting of
the test mode
mable speed.
g the position
t in a safe wa
parameters,

has been fore
mal operation

effective at th

AC motor.

IU (intern

internal

= 0.1ms. Mo

aturation =

crement = 1

0[deg]

increment ~

mode. In this
f a limited ra
e offers also t
 As result, the
n sensor. Th
ay a series of
drive status

eseen to facilit

he next updat

The drive

nal curren

units

otor has 2

= 1[A]

10[A/s]

~= 2e+002[

MPD U

s mode a curr
amp. For AC
he possibility
ese motors c

he main adva
tests, which c
and the in

tate the testin

te command U

e has

nt units)

2 pole pair

[deg/s]

User Manual

rent comman
C motors (lik

y to rotate a c
an be moved
antage of this
can offer imp
ntegrity of th

ng during the

UPD.

rs

nd can
ke for
urrent

d in an
s test
ortant
he its

setup

© ElectroC

Syntax

MODE VC

Operands

Binary co

Descripti

Example

Syntax

MODE VE

MODE VE

Craft 2013

6.2

C

s –

ode

on Sets th
can p
interpo
segme
path re

Remar
phase

The new

MODE

REF0

SEG 4

UPD;

SEG 1

SEG 1

SEG 1

SEG 2

SEG 9

SEG 1

SEG 0

6.2

ES

EF

2.5.1.100.

M

he drive/moto
rogram an a

olation is per
ents. In the vo
epresents a v

rk: The voltag

w motion mod

VC;

= 7744;

4999U, -0.5

1U, -0.4920

1999U, 1.93

1U, 1.92673

2000U, 0.00

999U, -9.03

1U, -9.0313

0, 0.0;

2.5.1.101.

M

M

56

MODE VC

MODE Voltag

or to operate i
arbitrary path
rformed, lead
oltage contou

voltage referen

ge contouring

de becomes e

 /

 /

51620;

 /

03;

3600;

3;

0000;

3500;

34;

//End o

MODE VES

MODE Voltag

MODE Voltag

63

ge Contouring

n voltage con
h via a ser
ding to a co
uring, the driv
nce.

g mode has

effective at th

//Set Volt

//Initial

//Execute

of contour

S

ge External S

ge External Fa

g

ntouring mode
ies of points
ntour describ
ve/motor perf

been foresee

he next updat

tage Contou

reference

immediate

ring

low

ast

MPD U

e. In the cont
s. Between
bed by a su
forms a volta

en for testing

te command U

uring

set to 3[

User Manual

touring modes
the points,
ccession of
ge control an

g during the

UPD.

V]

s, you
linear
linear

nd the

setup

© ElectroC

Operands

Binary co

Descripti

Example

//

ER

EX

MO

UP

Craft 2013

s –

ode

on Sets th
perform
2 types

• Ana

•

When t
done in

• MO

• MO

When t
MODE

Remar
phase

The new

/Read volt

REFV = 30;

XTREF 0;

ODE VES; /

PD; //exec

e drive/motor
ms a voltage c
s of external re

alogue – read

Online – rec
the MPL var

the voltage re
n 2 ways:

ODE VES – at

ODE VEF – at

the voltage re
TES is possi

rk: The voltag

w motion mod

age refere

// EREFV i

/External

ute immedi

56

r to operate in
control with a
eferences (se

d from a dedic

ceived online
riable EREFT

eference is re

t each slow lo

t each fast loo

eference is re
ble.

ge contouring

de becomes e

ence from v

initial = 3

voltage

iate

64

n the voltage
 voltage refer

electable via t

cated analogu

 via a comm
T

ead from the a

oop sampling

op sampling p

eceived onlin

g mode has

effective at th

variable E

30[IU]

external mod
rence provide
the MPL instr

ue input (MPL

unication cha

analogue inpu

period

period

ne via a comm

been foresee

he next updat

EREFV

MPD U

de. In this mod
ed by another
ruction EXTR

L variable AD

annel from a

ut, the refere

munication c

en for testing

te command U

User Manual

de, the drive/
r device. The
EF):

D5)

host and sav

nce update c

hannel only o

g during the

UPD.

/motor
re are

ved in

can be

option

setup

© ElectroC

Syntax

MODE VT

Operands

Binary co

Descripti

Example

MO

RE

RI

UP

Craft 2013

6.2

T

s –

ode

on Sets th
be set
exampl
referen
“open-l
mode is
informa
connec

Remar
setup p

The new

ODE VT;

EFTST_V =

INCTST_V =

PD;

2.5.1.102.

M

e drive/motor
using a tes

le the brushle
ce vector with
oop” mode w
s the possibil
ation about
ctions.

rk: The voltag
phase. It is no

w motion mod

 //V

5022; //R

 4; //R

 //U

56

MODE VT

MODE Voltag

r to operate in
t reference c

ess motors), t
h a programm
without using
ity to conduct
the motor p

ge test mode
ot intended for

de becomes e

Voltage Tes

Reference s

Reference i

Update imme

65

ge Test

n voltage test
consisting of
he test mode

mable speed.
g the position
t in a safe wa
parameters,

e has been f
r normal oper

effective at th

st Mode

saturation

increment

ediate

mode. In this
f a limited ra
e offers also th
 As result, the
n sensor. Th
ay a series of
drive status

foreseen to f
ration

he next updat

n value = 1

value = 1[

MPD U

s mode a volt
amp. For AC
he possibility
ese motors c

he main adva
tests, which c
and the in

facilitate the

te command U

1[V]

[V/s]

User Manual

tage comman
C motors (lik
to rotate a vo
an be moved
antage of this
can offer imp
ntegrity of th

testing durin

UPD.

nd can
ke for
oltage

d in an
s test
ortant
he its

ng the

© ElectroC

Only avai

Syntax

MODE VM

Operands

Binary co

Descripti

Example

// 2D

//incr

 SETMOD

 VPLANE

 MODE V

 // Inc

 VSEG1

 UPD; /

 // Cir

 // and

 CIRCLE

 // Inc

 VSEG1

 // Cir

Craft 2013

6.2

lable on multi

M

s –

ode

on Sets th
genera
configu

The pa
receive

Each s
interpo
segmen
in Quic

linear in

remental e

DE 0xCF00;

E (A, B, C

VM; // Set

crement po

200L, 200

//Execute

rcular seg

d angle in

E1 1L, 50.

crement po

1000L, 20

rcular seg

2.5.1.103.

i-axis Motion

he motion con
tes a 2D tra

ured with SET

ath segments
ed via a comm

segment is s
lation, rebuild
nt. If the sequ
kstop mode a

nterpolated

encoder

; //Clear b

C);

t Vector Mo

osition wit

0L; VSEG2 2

immediate

gment of ra

ncrement 50

.; CIRCLE2

osition wit

000L; VSEG2

gment of ra

56

MODE VM

Controller

MODE V

ntroller to ope
ajectory usin

TMODE comm

can be store
munication cha

split in PVT
d the trajecto
uence doesn’
and the stops

d profile.

buffer

ode

th (X, Y)

200L, 200L

adius 3.14

0[deg])

1L, 20.;

th (X, Y)

2 1000L, 2

adius 6.28

66

Vector Mode

erate in vecto
ng circular an
mand.

ed in the non
annel from a

points and s
ory. The seg
’t have an en
 the slaves.

 Position

= (0.1[rot

L;

4159[mm], w

= (0.5[rot

2000L;

8319[mm], w

or mode. In t
nd linear se

n-volatile mem
host.

sent to the s
gments seque
nd segment th

feedbacks

t], 0.1[ro

with initi

t], 1[rot]

with initi

MPD U

this mode the
egments. The

mory of the m

slaves which
ence must fi
hen the motio

s: 500 line

ot])

ial angle 2

)

ial angle 1

User Manual

e motion con
e motion mo

motion contro

h, using 3rd
inish with the
on controller e

es

20[deg]

10[deg]

ntroller
ode is

ller or

order
e end
enters

© ElectroC

 // and

 CIRCLE

 // Ins

 VSEG1

 WMC (A

Syntax

NOP

Operands

Binary co

Descripti

Example

Va

LOOP:

Va

NO

GO

Craft 2013

d angle in

E1 2L, 90.

sert End S

0L, 0L; V

A, B, C);

6.2

s –

ode

on No ope
NOP in

ar1=100;

ar1-=1;

OP;

OTO LOOP,

ncrement 90

.; CIRCLE2

Segment

VSEG2 0L, 0

// wait fo

2.5.1.104.

N

eration is exe
nstruction ma

 //

 //

 //

Var1, GEQ;

56

0[deg])

2L, 10.;

0L;

or motion

NOP

No Operation

ecuted. The M
ay be used to

execute a

decrement

no operati

; // stay i

67

completion

n

MPL program
introduce a d

100 times

Var1 by 1

ion

in loop if

n

m will continue
delay between

s a loop

1

f Var1 >= 0

MPD U

e with the ne
n two instruct

0

User Manual

ext instruction
tions.

n. The

© ElectroC

Syntax

OUT(n1,

OUT(n1,

Operands

Binary co

Descripti

Craft 2013

6.2

n2, …) = valu

n2, …) = VAR

s n1, n2

value16

VAR16

ode

on The ins
or the v

Each b
an cont
are set

In MPL
of outpu

Warnin
comma
of the o

This in
specifie

2.5.1.105.

ue16 O

R16 O

: IO line numb

6: 16-bit integ

6: 16-bit intege

struction sets
value of the sp

it from the th
trol bit identif
high (1), else

L the output li
uts, therefore

ng! Check ca
and if any of th
outputs using

struction use
es the destina

56

OUT

OUTput value

OUTput VAR

ber

ger immediate

er variable

 one or seve
pecified varia

e output line
ied If the abo
e the outputs

nes are num
e only a part o

arefully your
he above outp
the OUT com

es a 9-bit sh
ation address

68

e16 to I/O n1,

16 value to n

e value

eral output lin
able.

has associat
ove bits from V
are set low (0

bered from 0
of the 15 outp

drive/motor
tputs is not av
mmand

ort address
range:

, n2, …

1, n2, …

es simultane

ted through
VAR are set
0).

0 to 15. Each
put lines is use

for the avail
vailable. You

for the dest

MPD U

ously with th

its number id
to 1, the corr

 product has
ed.

lable outputs
can always s

tination varia

User Manual

e immediate

dentifier assoc
responding ou

a specific nu

s. Do not us
set separately

ble. Bit 9 va

value

ciated
utputs

umber

e this
y each

alue X

© ElectroCraft 2013 569 MPD User Manual

Example

int user_var;

user_var = 0x800A;// setup user_var variable

OUTPORT user_var;//Send variable address to external output port

// The command sets high the outputs: #25/Ready, #31 and #29

// and low the outputs: #12/Error, #30 and #28

© ElectroC

Syntax

OUTPOR

Operands

Binary co

Descripti

Example

in

us

OU

//

//

Craft 2013

6.2

RT VAR16

s VAR16

ode

on The ins

• Rea

• Erro

• Gen

If the a
the out

In MPL
inputs
comm

Warnin
comm
each o

This in
specifi

nt user_va

ser_var =

UTPORT use

/ The comm

/ and low

2.5.1.106.

O

6: 16-bit integ

struction sets

ady output (#

or output (#12

neral-purpose

above bits fro
tputs are set

L the I/O line
and outputs,
on for all the

ng! Check c
and if any of
of the outputs

nstruction use
ies the destin

r;

0x800A;//

r_var;//Se

mand sets h

the output

57

OUTPO

OUTput VAR

ger variable

simultaneous

25/READY) –

2/ERROR) –

e outputs: #3

om VAR are s
low (0).

es are numbe
 therefore on
products; hen

carefully your
f the above o

s using the OU

es a 9-bit sh
ation address

setup user

end variabl

high the ou

ts: #12/Err

70

ORT

16 value to IO

sly the followi

– set by bit 15

set by bit 14

1, #30, #29, #

set to 1, the c

ered: #0 to #
ly a part of th
nce each prod

r drive/motor
outputs is no
UT command

hort address
s range:

r_var vari

le address

utputs: #2

ror, #30 a

OPORT

ng drive/moto

5 from VAR16

from VAR16

#28 – set by b

correspondin

#39. Each pro
he 40 I/O line
duct has its o

for the avai
ot available. Y
d

s for the dest

iable

s to extern

25/Ready, #

and #28

MPD U

or output lines

6

bits 3, 2, 1, an

ng outputs are

oduct has a s
s is used. Th

own list of ava

ilable outputs
You can alwa

tination varia

nal output

#31 and #2

User Manual

s:

nd 0 from VA

e set high (1)

specific numb
e I/O number

ailable I/Os.

s. Do not us
ays set sepa

able. Bit 9 va

t port

29

R16

), else

ber of
ring is

e this
arately

alue X

© ElectroC

Syntax

PING

Operands

Binary co

Descripti

Craft 2013

6.2

G value16

–

s value1

Rema
canno
identify

In the
networ
all the

ode

on By bro
drives/
the ho
comm

The op
multipl
answe
answe
is conn
the ho

Rema
the va
rate of

2.5.1.107.

Re

An

16: 16 bit imm

rk: The onlin
t reside in a

fy these comm

Command in
rk by sending
axes are disp

oadcasting a
/motors prese
ost bit (H) fro
unication pro

perand of PIN
lied with the

er. For exam
er after a dela
nected via an
st is directly c

rk: If the PIN
alue16 is set b
f 115200. For

57

PING/PON

equest the axi

nswer to PING

mediate value,

ne instruction
MPL program

mands.

nterpreter, yo
g a PING requ
played in the

a PING comm
ent in the net
om the expe
tocol descript

NG, value16,
axis ID of ea

mple if value1
ay of 100 x 20
n RS-232 link
connected on

NG command
by default at
r smaller baud

71

NG

is ID and firm

G

, used to com

ns are intende
m. Therefore

ou can check
uest with synt
output windo

mand, the ho
twork. When t
ditor address
tion.

, represents a
ach axis to p
16 is 2000 th
000µs = 0.2s.
with one of th

n the CAN-bus

d is sent from
2000. This v

d rates the va

mware version

mpute each ax

ed only for h
their syntax i

k which drives
tax PING valu

ow.

ost/master c
the PING req
s must be se

a time interva
provide a time
hen the drive
 The time de
he drives/mot
s network, va

m the Comma
value corresp
alue16 must b

MPD U

n from a group

xis answer de

host/master c
is fictive, the

s/motors are
ue16. The PO

an find the
quest is sent
et to 1. For

al measured
e delay for s
e/motor with
lay is necess
tors from a C

alue16 can be

and Interprete
onds to the h

be increased p

User Manual

p of axes

elay

ommunication
only goal be

connected in
ONG answers

axis ID of a
via an RS-23
details, see

in µs. This ti
sending the P
axis ID = 10

sary only if the
AN-bus netw

e 0.

er without ope
highest serial
proportionally

n and
eing to

n your
s from

all the
32 link
serial

ime is
PONG
00 will
e host

work. If

erand,
l baud
y.

© ElectroCraft 2013 572 MPD User Manual

Each axis will answer to a PING command with a PONG message, which provides the
Axis ID and the firmware version of the expeditor. The firmware version has the form:
FxyzA, where xyz is the firmware number (3 digits) and A is the firmware revision. The
PING message will include the ASCII code of 4 characters: 3 digits for the firmware
number + 1 letter for the firmware revision.

© ElectroC

Syntax

PTP P_va

PTP P_va

Operands

Binary co

Descripti

Craft 2013

6.2

alue, T_value

ar, T_var, C_

s P_valu

T_valu

C_valu

P_var –

T_var –

ode

on Defines
values

A PT p
integrity
checkin
compar
comma
two inte
sends
discard
interna

2.5.1.108.

e, C_value

value

ue – 32-bit lon

ue – 16-bit uns

ue – 7-bit inte

– long variab

– integer vari

s a PT point.
or via the val

point also inc
y counter ea
ng is activate
res its interna

and. The PT p
egrity counter
the PVTSTS

ded. Each tim
l integrity cou

57

PTP

Def

Def

ng integer imm

signed intege

ger immediat

le, contains th

able, contains

The PT posit
ues of 2 MPL

cludes a 7-bit
ch time when
ed, every tim
ally computed
point is accep
rs do not mat
S to the hos
e a PT point

unter.

73

fine a PT poin

fine a PT poin

mediate value

er immediate v

te value, PVT

he PT point p

s the PVT po

ion and time
L variables.

t integrity cou
n it sends a
me when the
d integrity co
pted only if th
tch, the integ
st with PVTS
is accepted,

nt via immedia

nt via MPL va

e: PT point po

value: PT poi

T point integrit

position

oint time

values may b

unter. The ho
new PT poin

e drive/motor
ounter value w
he two values
grity check er
STS.12 =1 a
the drive/mo

MPD U

ate values

ariables

osition

int time

ty counter

be provided e

ost must incr
nt. If the inte
r receives a
with the one
s are equal. I
rror is triggere
and the PT

otor automatic

User Manual

either as imme

rement by on
egrity counter

new PT po
sent with the
If the values
ed, the drive/

point receiv
cally incremen

ediate

ne the
r error
oint, it
e PTP
of the
/motor
ved is
nts its

© ElectroCraft 2013 574 MPD User Manual

Example

SETPT 0xCF00; //Clear PT buffer

MODE PT; // Set PT Mode

TUM1; //Start from actual value of position reference

CPR;

PTP 2000L, 2000U, 0; //PT(1[rot], 2[s])

UPD; //Execute immediate

PTP 6000L, 500U, 0; //PT(4[rot],2.5[s])

PTP -2000L, 500U, 0; //PT(3[rot],3[s])

!MC; WAIT!; //wait for completion

© ElectroC

Syntax

PVTP P_

PVTP P_

Operands

Binary co

Descripti

Craft 2013

6.2

value, V_valu

var, V_var, T_

s P_valu

V_valu
PVT po

T_valu

C_valu

P_var –

V_var –

T_var –

ode

on Defines
as imm

A PVT
integrity
checkin
compar
comma
two inte
sends
discard
its inter

2.5.1.109.

ue, T_value, C

T_var, C_value

ue – 24-bit lon

ue – 24-bit fix
oint velocity

ue – 9-bit integ

ue – 7-bit inte

– long variab

– fixed variab

– integer vari

s a PVT poin
mediate values

point also in
y counter eac
ng is activate
res it’s interna

and. The PVT
egrity counter
the PVTSTS

ded. Each tim
rnal integrity c

57

PVTP

C_value Def

e Def

ng integer imm

xed immediat

ger immediate

ger immediat

le, contains th

ble, contains t

able, contains

t. The PVT p
s or via the va

ncludes a 7-b
ch time when
ed, every tim
ally computed

T point is acce
rs do not mat

S to the hos
me a PVT poi
counter.

75

ine a PVT po

ine a PVT po

mediate value

te value (16M

e value: PVT

te value, PVT

he PVT point

the PVT point

s the PVT po

position, veloc
alues of 3 MP

it integrity co
n it sends a n
me when the
d integrity cou
epted only if t
tch, the integ

st with PVTS
nt is accepte

oint via immed

oint via MPL v

e: PVT point p

MSB integer

point time

T point integrit

position

t velocity

oint time

city and time
PL variables.

ounter. The h
new PVT poi
 drive/motor
unter value w
the two value
grity check er
STS.12 =1 a
ed, the drive/m

MPD U

diate values

variables

position

part and 8LS

ty counter

values may

host must incr
nt. If the inte
receives a

with the one s
es are equal.
rror is triggere
nd the PVT
motor automa

User Manual

SB fractional

be provided

rement by on
egrity counter
new PVT po

sent with the
If the values
ed, the drive/

point receiv
atically increm

part):

either

ne the
r error
oint, it
PVTP
of the

/motor
ved is
ments

© ElectroCraft 2013 576 MPD User Manual

Example

SETPVT 0xCF00; //Clear PVT buffer

MODE PVT; // Set PVT Mode

TUM1; //Start from actual value of position reference

CPR;

PVTP 12000L, 0.04, 300U, 0;//PVT(6[rot], 1.199[rpm], 0.3[s])

UPD; //Execute immediate

PVTP -8000L, 0, 200U, 0;//PVT(2[rot], 0[rpm], 0.5[s])

!MC; WAIT!; //wait for completion

© ElectroC

Syntax

REG_OF

Operands

Binary co

Descripti

Example

RE

MO

UP

//

Craft 2013

6.2

F

s –

ode

on Disabl
When
and th
electro
disable

EG_OFF; //

ODE GS; //

PD; //exec

/ drive/mo

2.5.1.110.

R

es the super
you disable

he drive/moto
onic gearing
e the superpo

Disable su

Set as sla

ute immedi

tor remain

57

REG OFF

REGistration

position of th
the superpos
or executes
slave mode,

osed mode.

uperpositio

ave, positi

iate

ns in gear

77

OFF

he electronic
sed mode, th
only the oth

, set first the

on

ion mode

slave mod

gearing mod
e electronic g
her motion.
e electronic

de without

MPD U

de with a sec
gearing slave
If you want
gearing slav

superposi

User Manual

cond motion m
e mode is sto

to remain i
ve move and

ition

mode.
opped
n the

d then

© ElectroC

Syntax

REG_ON

Operands

Binary co

Descripti

Example

//
//

GE

GE

GE

EX

MA

RE

MO

TU

SR

CA

UP

Craft 2013

6.2

s –

ode

on The in
motion
compu

You m
activat
activat
treated
instead
a seco
This m
subseq

/Set elec
/Master re

EAR = 0.33

EARMASTER

EARSLAVE =

XTREF 0; /

ASTERRES =

EG_ON; //E

ODE GS; //

UM1; //Set

RB UPGRADE

ACC = 0.95

PD; //exec

2.5.1.111.

R

struction ena
n mode. Wh
uted as the su

may enable
tion/deactivat
ted during an
d as a secon
d of replacing
ond electronic
move is sup
quent motion

ctronic ge
esolution:

33; // gea

= 3; //gea

 1; //gear

/ master p

 2000; //

nable supe

Set as sla

 Target Up

, 0xFFFF,

49; //Limi

ute immedi

57

REG ON

REGistration

ables the sup
en this supe

um of the pos

the superp
ion of the e

n electronic g
nd move to b
g it. If the sup
c gearing mo
erposed ove
will be added

earing sla
2000 coun

ar ratio

ar ratio de

r ratio num

position go

master res

erposition

ave, positi

pdate Mode

0x0004; //

it maximum

iate

78

ON

perposition of
erposed mod
ition referenc

posed mode
electronic ge

gearing motio
be superpose
perposed mod
de will start u

er the first o
d to the electr

ave more
nts/rev

enominator

merator

ot via com

solution

ion mode

1

/UPGRADE.2

accelerat

the electron
de is activat

ces for each o

at any m
earing slave.
on, any subse
ed over the b
de is activate
using the mo

one. After th
ronic gearing.

with sup

r

mmunication

2 = 1

tion at 300

MPD U

ic gearing mo
ted, the pos

of the 2 super

oment, inde
. If the sup
equent motio
basic electro

ed during ano
otion paramet
e first move
.

perposed m

n channel

00[rad/s^2

User Manual

ode with a se
sition referen
rposed motion

ependently o
perposed mo
n mode chan
nic gearing m

other motion m
ters previousl
e ends, any

mode enab

2]

econd
nce is
ns.

of the
ode is
nge is
move,
mode,
ly set.
other

bled.

© ElectroC

Syntax

REMGRID

Operands

Binary co

Descripti

Example

GR

AD

..

RE

Craft 2013

6.2

D (value_1, v

s value_

ode

on The c
repres
each a
have a
membe
includi
to one

After th

•

•

•

•

ROUPID (8)

DDGRID (2,

..

EMGRID (5,

2.5.1.112.

value_2, …) R

_1, value_2: s

command rem
ents a filter f

axis compare
at least one g
er of group 1
ng group 1 o
group: bit 0 –

he execution

Bit 0 is set

Bit 1 is set

…

Bit 7 is set

;//local a

 5);//loca

 8);//loca

57

REMGRID

REMove spec

specify a grou

moves group
for a multicas

es the messa
group in comm
1 and group
r group 3. Th
– group 1, bit

of this comm

to 0, if (group

to 0, if (group

to 0, if (group

axis belong

al axis bel

al axis bel

79

cified groups

up number be

ps from the
st transmissio
ge group ID

mon, the mes
3, it will rece
e group ID is
1 – group 2…

and, the grou

p) 1 occurs in

p) 2 occurs in

p) 8 occurs in

gs to grou

longs to g

longs only

from GRoup

tween 1 and

group ID.
on. When a
with its own

ssage is acce
eive all the m
 an 8-bit integ

… bit 7 – grou

up ID value is

the parenthe

the parenthe

the parenthe

ups 8

groups 2, 5

y to group

MPD U

ID

8

On each ax
multicast me
group ID. If

epted. For exa
messages sen
ger value. Ea
up 8.

s modified as

esis

esis

esis.

5 and 8

2

User Manual

xis, the grou
ssage is rece
the two grou
ample, if an a
nt with a gro

ach bit corresp

follows:

up ID
eived,

up IDs
axis is
oup ID
ponds

© ElectroC

Syntax

RESET

Operands

Binary co

Descripti

Craft 2013

6.2

s –

ode

on Resets
the driv

Remar
availab
not pos
and the

2.5.1.113.

R

the drive/mo
ve/motor after

rk: The drive/
ble setup data
ssible to exec
en to execute

58

RESET

Reset DSP pr

otor. The com
r downloading

/motor key in
a. This proces
cute again th
ENDINIT com

80

rocessor

mmand may b
g new setup d

nitializations
ss is irreversib
e ENDINIT c
mmand

be used by a
data.

are done at
ble. If later on
command. It i

MPD U

an external de

ENDINIT co
n the setup da
is necessary

User Manual

evice to reini

mmand, usin
ata is change

to reset the

tialize

ng the
d, it is
drive,

© ElectroC

Syntax

RET

Operands

Binary co

Descripti

Example
..

CA

UP

..

Function

..

RE

Craft 2013

6.2

s –

ode

on Ends th
after th

..

ALL Functi

PD;

..

n1:

..

ET;

2.5.1.114.

RETurn

he execution
e function ca

on1; //

 //

// e

 //E

58

RET

n from a MPL

of a MPL fun
ll.

Call Funct

Update imm

executed af

Exit from F

81

L function

nction and per

tion1

mediate is

fter RET

Function1

rforms the ret

s next inst

MPD U

turn to the ne

truction

User Manual

ext MPL instru

uction

© ElectroC

Syntax

RETI

Operands

Binary co

Descripti

Example

In

Craft 2013

6.2

s –

ode

on Ends th
postpon
globally

nt5_WrapAr

AXISOF

RETI;

2.5.1.115.

RETurn

he execution
ned by the M
y disabled wh

ound: //

FF;

 //

58

RETI

n from a MPL

of a MPL ISR
MPL interrupt
hen the MPL i

/ Int5 ISR:

/ return fr

82

L Interrupt fun

R and returns
t. RETI globa
nterrupt was

: position

rom MPL IS

nction

to the MPL c
ally enables t
accepted and

n wraparoun

SR

MPD U

command wh
the MPL inte
d the ISR was

nd

User Manual

ose executio
errupts which
s called.

n was
were

© ElectroC

Syntax

RGM

Operands

Binary co

Descripti

Example

RG

UP

Syntax

ROUT#n

Operands

Binary co

Craft 2013

6.2

s –

ode

on Resets
as mas
position
MPL p
disable

Remar
the ma

GM; //

PD; //

6.2

s n: outp

ode

2.5.1.116.

R

the drive/mo
ster, the driv
n reference T
parameter SL
d. The instruc

rk: Setting /
aster

/ exit from

/ update

2.5.1.117.

R

put line numbe

58

RGM

Reset axis as

otor from the e
e/motor send

TPOS (if OSR
LAVEID. Foll
ction become

resetting the

m master m

ROUT

Reset OUT#n

er (0<=n<=39

83

s Gear/Cam M

electronic gea
ds either the
R.15 = 1) to th
lowing a RG

es effective at

master oper

mode;

n to low state

9)

Master

aring / cammi
load position

he axis or the
GM command
t the next upd

ration does n

(0)

MPD U

ing master op
n APOS (if O
e group of ax
d, the maste

date command

not change th

User Manual

peration. Whe
OSR.15 = 0) o
xes specified
er transmissi
d UPD.

he motion mo

en set
or the
in the
ion is

ode of

© ElectroCraft 2013 584 MPD User Manual

Description ROUT#n instruction sets low (0 logic) the output line number n. In MPL the I/O lines are
numbered: #0 to #39. Each product has a specific number of inputs and outputs, therefore
only a part of the 40 I/O lines is used. The I/O numbering is common for all the products;
hence each product has its own list of available I/Os.

Example

ROUT#28; //Reset output line #28 to 0 (set low)

© ElectroC

Syntax

SAP valu

SAP VAR

Operands

Binary co

Descripti

Craft 2013

6.2

ue32

R32

s value3

VAR32

ode

on Sets/ch
load po
error P
32-bit l
has the

• If l

TP

AP

• If l

AP

TP

Remar
comma

This in
specifi

2.5.1.118.

32: 32-bit long

2: long variab

hanges the re
osition APOS
OSERR. You
ong variable.

e following eff

last motion m

POS = new_v

POS = TPOS

last motion m

POS = new_v

POS = APOS

rk: In case
and sets the n

nstruction use
ies the destin

58

SAP

Set A

Set A

g immediate v

ble

eferential for
and the targe

u can specify
. SAP comma
fect:

mode setting w

value;

– POSERR;

mode setting w

value;

+ POSERR;

of steppers
new position

es a 9-bit sh
ation address

85

Actual Position

Actual Position

value

position mea
et position TP
y the new pos
and can be e

was done with

was done with

controlled o
value only in

hort address
s range:

n to value32

n to VAR32

asurement b
POS values, w
sition either a
executed at a

h TUM1:

hout TUM1, i.e

open loop wi
TPOS.

s for the dest

MPD U

by changing s
while keeping
as an immed
any moment

e. with TUM0

ith no positio

tination varia

User Manual

simultaneous
g the same po
iate value or
during motio

0:

on feedback,

able. Bit 9 va

ly the
osition
r via a
n and

 SAP

alue X

© ElectroCraft 2013 586 MPD User Manual

Example

// Position profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//slew speed = 1000[rpm]

CPOS = 6000;//position command = 3[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; // set event when motion is completed

WAIT!;//Wait until the event occurs i.e. the motor stops

// At this point TPOS=6000, APOS = 6000-POSERR

SAP 2000; // Set actual position 1[rot]

// Now, TPOS=2000, APOS=2000-POSERR

© ElectroC

Syntax

SAVE

Operands

Binary co

Descripti

Example

SA

Craft 2013

6.2

s –

ode

on Saves
RAM m
can sa

AVE; // Sa

2.5.1.119.

Sav

the actual va
memory into t
ave all the set

ave setup d

58

SAVE

ve setup data

alues of all th
the EEPROM
tup modificatio

data in th

87

in the EEPRO

he MPL param
M memory, in t

ons done, aft

he EEPROM s

OM

meters with s
the setup tab
ter the power

setup tabl

MPD U

setup data fro
ble. Through t

on initializatio

le

User Manual

om the active
this command
on.

e data
d, you

© ElectroC

Syntax

SCIBR va

SCIBR VA

Operands

Binary co

Descripti

Craft 2013

6.2

alue16 S

AR16 S

s value1

VAR16

ode

on Sets th
baud r
variabl

The se

a. Wi

b. If th

c. If th

Remar

• Us
to e
at
sta

2.5.1.120.

Set Serial Co

Set Serial Co

16: 16-bit integ

6: integer vari

he baud rate
rate can be
le. In both cas

erial baud rate

th the value r

he setup table

here is no ba

rks:

se this comma
execute the M
a baud rate

art with a seria

58

SCIBR

ommunication

ommunication

ger immediat

iable

on the RS23
provided eith

ses, the poss

e is set at pow

read from the

e is invalid, w

ud rate set by

and when a d
MPL program
different from
al baud rate c

88

 Interface Ba

 Interface Ba

e value betwe

32/RS485 ser
her as an im

sible values ar

wer on using t

EEPROM se

with the last ba

y a valid setu

drive/motor op
m from the EEP
m the default
change.

aud Rate to va

aud Rate to VA

een 0 and 4

rial communic
mmediate val
re:

the following

etup table

aud rate read

p table, with 9

perates in AU
PROM) and i
value. In this

MPD U

alue16

VAR16

cation interfa
lue or by the

algorithm:

d from a valid

9600.

UTORUN (aft
it must comm
s case, the M

User Manual

ce (SCI). The
e value of a

setup table

ter power on
unicate with a

MPL program

e new
 MPL

starts
a host

m must

© ElectroCraft 2013 589 MPD User Manual

• An alternate solution to the above case is to set via SCIBR command the desired
baud rate and then to save it in the EEPROM, with the command SAVE. After a reset,
the drive/motor starts directly with the new baud rate, if the setup table was valid.
Once set, the new default baud rate is preserved, even if the setup table is later on
disabled, because the default serial baud rate is stored in a separate area of the
EEPROM.

Example

SCIBR 4; // sets the SCI baud rate to 115200 baud

© ElectroC

Syntax

SEG D_ti

SEG VAR

Operands

Binary co

Descripti

Craft 2013

6.2

ime, D_ref

R16, VAR32

s D_time

D_ref: 3

VAR16

VAR32

ode

on Define
be pro
repres
sampli
per tim

SEG V
the des

2.5.1.121.

Define a co

Define a co

e –16-bit unsi

32-bit fixed im

– 16-bit integ

– 32-bit fixed

es a contourin
ovided either
ents the seg
ng periods. T

me unit i.e. pe

VAR16, VAR3
stination addr

59

SEG

ntouring segm

ntouring segm

gned integer

mmediate valu

ger variable: s

d variable: seg

ng segment. T
as immediate

gment duratio
The reference
r slow loop sa

32 uses a 9-b
ress range:

90

ment via imm

ment via MPL

value: segme

ue: segment r

segment time

gment referen

The time and
e values or v
on expressed
e increment r
ampling perio

it short addr

ediate values

L variables

ent time

reference incr

e

nce incremen

d the referenc
via the values
d in time uni
represents th

od.

ress for the o

MPD U

s

rement per tim

nt per time un

ce increment
s of 2 MPL v
its i.e. in num
e amount of

perand. Bit 9

User Manual

me unit

nit

t per time uni
ariables. The
mber of slow
reference var

, value X, spe

it may
e time
w loop
riation

ecifies

© ElectroCraft 2013 591 MPD User Manual

Example

// Position contouring with position feedback on motor: 500 lines

// incremental encoder (2000 counts/rev)

MODE PC;//Set Position Contouring

TUM1;//Start from actual value of position reference

SEG 100U, 20.00000; //1st segment. At its end, TPOS increases with

 // 20*100 = 2000 counts (i.e. 1 rev)

UPD; //Execute immediate

SEG 100U, 0.00000; // 2nd segment. At its end TPOS remains the same SEG
0, 0.0; //End of contouring

© ElectroC

Syntax

SEND VA

SEND VA

Operands

Binary co

Descripti

Executio

Example

MA

//

SR

SR

ME

SE

Syntax

SetAsInp

Operands

Craft 2013

6.2

AR16

AR32

s VAR16

VAR32

ode

on When
Data 2
variab

n The va

ASTERID =

/Send SRH

RH_MASK =

RL_MASK =

ER_MASK =

END CAPPOS

6.2

put(n1, n2, n3

s n1, n2
line in

2.5.1.122.

SEND

SEND

6: integer vari

2: long/fixed v

the instructio
2” message t
le. Bit value X

alue of VAR16

33; // Set

& SRL if m

0x0002;

0x0400;

0xFFFF; //

S; // Send

2.5.1.123.

3,…) S

, n3: IO line n
the IO_mask

59

SEND

D the content

D the content

iable

variable

on is encount
type. The ins
X specifies the

6/VAR32 is se

t host ID

motion com

/ send MER

to host c

SetAsInpu

etAsInput th

number. It sp
k.

92

of VAR16

of VAR32

tered, the co
struction uses
e destination

ent using “Ta

/ address

mplete or p

R on any bi

contents of

ut

e I/O lines nu

ecifies the po

ontent of VAR
s a 9-bit sho
address rang

ke Data 2” m

= 2

pos. trigg

it change

f variable

umbers n1, n2

osition of the

MPD U

R16/VAR32 is
ort address
ge:

essage.

ger 1 bits

e CAPPOS

2, n3

control bit as

User Manual

s sent using
for the destin

change

ssociated to th

“Take
nation

he I/O

© ElectroC

Binary co

Descripti

Example

Se

v1

Syntax

SetAsOu

Operands

Binary co

Craft 2013

ode

on Some d
Before
input n
IO_mas
are num

Remar

• Che
that
inpu

• You

e

etAsInput(

1 = IN(2);

6.2

utput(n1, n2,

s n1, n2
line in

ode

drives/motors
using these
umbers as a
sk, i.e. input n
mbered from 0

rks:

eck the drive/
t may be used
uts, therefore

u need to set a

2,5); //S

 //Read I/

2.5.1.124.

n3,…) S

, n3: IO line n
the IO_mask

59

s include I/O
lines as inpu
rgument. The
number 2 has
0 to 15.

/motor user m
d either as inp
only a part of

an I/O line as

Set IO line

/O line 2 d

SetAsOutp

etAsOutput

number. It sp
k.

93

lines that m
uts you have
e input numbe
s associated

manual to find
puts or as out
f the 15 input

s input, only o

e 2 and 5

data into

put

I/O lines num

ecifies the po

may be used
e to use the S
ers identifies
bit 2 in the IO

d how are se
tputs. Each p
t lines is used

once, after po

as inputs

variable v

mbered n1, n2

osition of the

MPD U

either as inp
SetAsInput c
 the correspo
O_mask. In M

et, after powe
product has a
d.

wer on

v1

2, n3

control bit as

User Manual

puts or as ou
command wit
onding bit fro
MPL the input

er-on, the I/O
specific num

ssociated to th

utputs.
th the
m the
t lines

O lines
mber of

he I/O

© ElectroC

Descripti

Example

Se

Ou

Syntax

SETIO#n

SETIO#n

Operands

Binary co

Craft 2013

on Some d
Before
as argu
from th
bit 7 the

Remark

• Che
that
inpu

• You

e

erAsOutput

ut(4,7)=0x

6.2

 IN

 OUT

s n: I/O n

ode

drives/motors
using these

ument the out
e IO_mask, i
e IO line will b

ks:

eck the drive/
t may be used
uts and outpu

u need to set a

(7); //S

0090; //S

2.5.1.125.

S

S

number 0<=n

59

s include I/O
lines as outp
tput lines num
.e. output nu
be used as ou

/motor user m
d either as inp

uts, therefore

an I/O line as

Set IO line

Set I/O lin

SETIO

SETIO#n as I

SETIO#n as O

n<=39)

94

lines that m
puts you have
mbers. The o
mber 7 has a
utput. In MPL

manual to find
puts or as out
only a part of

s output, only

e 7 as out

nes 4 and

Input port

OUTput port

may be used
e to use the S
output lines nu
associated bi
L the output lin

d how are se
tputs. Each p
f the 15 outpu

once, after p

tput

7 to High.

MPD U

either as inp
SetAsOutput
umbers ident
t 7 in the IO_
nes are numb

et, after powe
product has a
ut lines is use

power on

.

User Manual

puts or as ou
t command h
tifies the cont
_mask, setting
bered from 0 t

er-on, the I/O
specific num
d.

utputs.
having
trol bit
g to 1
to 15.

O lines
mber of

© ElectroCraft 2013 595 MPD User Manual

Description Some drives/motors include I/O lines that may be used either as inputs or as outputs.
Before using these lines, you need to specify how you want to use them, with the SETIO
commands:

SETIO#n OUT; //Set the I/O line #n as an input

SETIO#n IN; //Set the I/O line #n as an output

Remarks:

• Check the drive/motor user manual to find how are set, after power-on, the I/O lines
that may be used either as inputs or as outputs

• You need to set an I/O line as input or output, only once, after power on

In MPL the I/O lines are numbered: #0 to #39. Each product has a specific number of
inputs and outputs, therefore only a part of the 40 I/O lines is used. The I/O numbering is
common for all the products; hence each product has its own list of available I/Os.

Example

SETIO#12 OUT; //Set IO line 12 as output

ROUT#12; //Reset IO line 12 level low (0 logic)

SETIO#12 IN; //Set IO line 12 as input

v1 = IN#12; //Read I/O line 12 data into variable v1

© ElectroCraft 2013 596 MPD User Manual

© ElectroC

Only avai

Syntax

SETMOD

Operands

Binary co

Descripti

Craft 2013

6.2

lable on multi

DE value16

s value1

ode

on Sets th
followin

Remar
MACOM

2.5.1.126.

i-axis Motion

SET 2D/

16: 16-bit integ

he Vector or
ng significanc

rk: after SET
MMAND.

59

SETMODE

Controller

/3D motion M

ger immediat

Linear Interp
e:

TMODE execu

97

E

ODE

e value

polation Mode

ution, a copy

e as specified

y of value16

MPD U

d by value16

6 is saved in

User Manual

6. Value16 ha

the MPL va

as the

ariable

© ElectroCraft 2013 598 MPD User Manual

Example

// 3D linear interpolated profile. Position feedbacks: 500 lines

//incremental encoder

 SETMODE 0xCF00; //Clear buffer

 LPLANE (A, B, C);

 MODE LI; // Set Linear Interpolation Mode

 //Increment position with (X, Y, Z) = (0.5[rot], 0.05[rot], 0.05[rot])

 LPOS1 1000L, 100L, 100L; LPOS2 1000L, 100L, 100L;

 UPD; //Execute immediate

 //Increment position with (X, Y, Z) = (0.05[rot], 0.5[rot], 0.05[rot])

 LPOS1 100L, 1000L, 100L; LPOS2 100L, 1000L, 100L;

 //Increment position with (X, Y, Z) = (0.5[rot], 0.1[rot], 0.25[rot])

 LPOS1 1000L, 200L, 500L; LPOS2 1000L, 200L, 500L;

 //Increment position with (X, Y, Z) = (0.5[rot], 0.5[rot], 0.5[rot])

 LPOS1 1000L, 1000L, 1000L; LPOS2 1000L, 1000L, 1000L;

© ElectroC

Syntax

SETPT va

Operands

Binary co

Descripti

Craft 2013

6.2

alue16

s value1

ode

on Sets t
signific

Remar
PVTM

2.5.1.127.

S

16: 16-bit integ

he PT mode
cance:

rk: after SE
ODE.

59

SETPT

SETup PT mo

ger immediat

e operation a

TPT executio

99

ode operation

e value

as specified b

on, a copy

n

by the value

of value16 i

MPD U

e16. Value16

is saved in

User Manual

has the follo

the MPL va

owing

ariable

© ElectroCraft 2013 600 MPD User Manual

Example

SETPT 0xE02F; //Leave PT buffer intact; Change integrity

//counter value to 17

MODE PVT; // Set PVT Mode

TUM1;//Start from actual value of position reference

CPR;

PVTP 2000L, 0.0667, 500U, 17;//PVT(1[rot], 1.9[rpm], 0.5[s])

UPD; //Execute immediate

PVTP 0L, 0.0667, 500U, 18;//PVT(1[rot], 1.99997[rpm], 1[s])

PVTP 6000L, 0, 500U, 19;//PVT(4[rot], 0[rpm], 1.5[s])

© ElectroC

Syntax

SETPVT

Operands

Binary co

Descripti

Craft 2013

6.2

value16

s value1

ode

on Sets th
signific

Remar
PVTM

2.5.1.128.

S

16: 16-bit integ

he PVT mod
cance:

rk: after SET
ODE.

60

SETPVT

SETup PVT m

ger immediat

de operation

TPVT execut

01

mode operatio

e value

as specified

tion, a copy

on

by the value

of value16

MPD U

e16. Value16

is saved in

User Manual

6 has the follo

the MPL va

owing

ariable

© ElectroCraft 2013 602 MPD User Manual

Example

// PVT sequence. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

MASTERID = 4081; // Set host address to 255 (255<<4+1)

SETPVT 0xC000; //Clear PVT buffer, disable counter check

 //Don’t change counter & buffer low condition

MODE PVT; // Set PVT Mode

TUM1;//Start from actual value of position reference

CPR; // Relative mode

PVTP 400L, 60, 10U, 0;//PVT(0.2[rot], 1800[rpm], 0.01[s])

UPD; //Execute immediate

PVTP 400L, 0, 10U, 0;//PVT(0.4[rot], 0[rpm], 0.02[s])

!MC; WAIT!; //wait for completion

© ElectroC

Syntax

SETSYNC

Operands

Binary co

Descripti

Example

SE

Craft 2013

6.2

C value16

s value1

ode

on Enable
these m
in two s
itself. W
master
time. If
keep th
proced
those o
betwee
activate
time int
Recom
deactiv

Remar
network
overall

ETSYNC 20;

2.5.1.129.

S

16: 16-bit integ

s/disables th
messages are
steps. First, t

When this me
sends its int
there are dif

hem synchro
ure is active,
of the maste

en master an
es the synchr
terval in inter
mended valu

vates the sync

rk: The mast
k or a host.
motion applic

 //Send sy

60

SETSYNC

SET SYNChr

ger immediat

e transmissio
e enabled, is m
the master se

essage is rece
ternal time to
fferences, the
onized with t

the executio
er within a 1
d slave axes
ronization pro
rnal units betw
ue is 20ms.
chronization p

ter for synch
The master

cation master

ynchronizat

03

ronization valu

e value

on of synchro
master for the
ends a synch
eived, all the
o all the slave
e slaves corre
those of the

on of the cont
10μs time int
s are elimina
ocedure if val
ween the syn
Setting value

procedure.

hronization pr
for this proce

r (if present).

tion messa

ue16

onization me
e synchroniza
hronization me

axes read th
es, which com
ect slightly the
e master. As
trol loops on t
terval. Due t

ated. The MP
lue is differen
nchronization
e to 0 stops

rocedure can
ess may or m

ages every

MPD U

ssages. The
ation process
essage to all

heir own inter
mpare it with
eir sampling

s effect, whe
the slaves is
to this powe

PL command
nt from 0. Va
messages s
the master

n be any dri
may not be

20[ms]

User Manual

drive/motor,
. This is perfo
 axes, includ

rnal time. Nex
 their own in
periods in ord

en synchroniz
synchronized

erful feature,
 SETSYNC

alue represen
sent by the m
transmissions

ive/motor from
the same wit

were
ormed
ing to
xt, the

nternal
der to
zation
d with
drifts

value
ts the

master.
s and

m the
th the

© ElectroC

Syntax

SGM

Operands

Binary co

Descripti

Example

//

SL

SG

SR

UP

Craft 2013

6.2

s –

ode

on Sets th
master
position
MPL p
enabled

Remar
the ma

/ On maste

LAVEID = 3

GM; //Enab

RB OSR, 0x

PD; //exec

2.5.1.130.

S

e drive/motor
r, the drive/m
n reference T
parameter SL
d. The instruc

rk: Setting /
aster

r axis:

31; //

ble Master

xFFFF, 0x80

cute immedi

60

SGM

Set axis as G

r in the electr
motor sends
TPOS (if OSR
LAVEID. Foll
ction becomes

resetting the

send to ax

in Electr

000; // OS

iate

04

Gear/Cam Mas

ronic gearing
either the lo

R.15 = 1) to th
lowing a SG
s effective at

master oper

xis 31

ronic Geari

SR.15=1 ->

ster

g / camming m
oad position A
he axis or the

GM command
the next upda

ration does n

ing mode

Send Posi

MPD U

master opera
APOS (if OS
e group of ax
d, the maste
ate command

not change th

ition Refer

User Manual

ation. When s
SR.15 = 0) o
xes specified
er transmissi
d UPD.

he motion mo

rence

set as
or the
in the
ion is

ode of

© ElectroC

Syntax

SOUT#n

Operands

Binary co

Descripti

Example

SO

Craft 2013

6.2

s n: outp

ode

on SOUT#
numbe
only a p
hence e

OUT#12;

2.5.1.131.

S

put line numbe

#n instruction
red: #0 to #39
part of the 40
each product

 //S

60

SOUT

Set OUT#n to

er (0<=n<=39

 sets high (1
9. Each produ
0 I/O lines is
has its own l

Set output

05

o high state (1

9)

logic) the ou
uct has a spe
used. The I/O
ist of availabl

line #12

1)

utput line num
ecific number
O numbering
le I/Os.

to 1 (set

MPD U

mber n. In MP
of inputs and
is common fo

high)

User Manual

PL the I/O line
d outputs, the
or all the prod

es are
refore
ducts;

© ElectroC

Syntax

SRB VAR

SRBL VA

Operands

Binary co

Descripti

Craft 2013

6.2

R16, ANDmas

AR16, ANDma

s VAR16

ANDma

ORmas

ode

on Perform
betwee
may be
the oth
with th
particul
drive/m

SRB us
address

All pre
instruc
future
for the

2.5.1.132.

sk, ORmask

ask, ORmask

6: integer vari

ask: 16-bit ma

sk: 16-bit mas

ms a logic A
en the result a
e used to set/
er ones. SRB
e other conc
larly useful fo

motor and use

ses a 9-bit sh
s range:

edefined or u
ction can be u
development
 operand.

60

SRB/SRBL

Set/Re

k Set/Re

iable

ask for AND o

sk for OR ope

AND between
and the OR
reset individu
B performs th
current proce
or the MPL re
r at MPL leve

hort address

user-defined M
used without
ts, the MPL a

06

L

eset Bits of VA

eset Bits of VA

operation

eration

n VAR16 and
mask. The re

ual bits from a
hese operatio
esses wantin
egisters, which
el.

s for the oper

MPL data ar
checking the
lso includes S

AR16 (short a

AR16 (full add

d the AND m
esult is saved
a register or a
ons in a safe
g to change
h have bits th

rand. Bit 9 va

re inside thes
e variables ad
SRBL instruc

MPD U

addressing)

dressing)

mask, followe
d in VAR16.
a MPL variab
e way avoidin
e the same M
hat can be m

alue X specif

se address r
ddresses. How
ction using a 1

User Manual

ed by a logi
These instruc
le without affe
ng the interfe
MPL data. T
anipulated by

fies the destin

ranges, henc
wever, consid
16-bit full add

c OR
ctions
ecting

erence
This is
y both

nation

e this
dering
dress

© ElectroC

Example

in

..

SR

Syntax

STARTLO

Operands

Binary co

Descripti

Example
//

//

ST

ST

[b

Craft 2013

nt var1;

...

RB var1, 0

6.2

OG value

s value:

ode

on Starts t
Value m

1 – acq

2 – acq
samplin

Where

Remar
logging

/ In the S

/ data acq

TARTLOG 1;

TARTLOG 2;

b]{STARTLO

xFF0F, 0x0

2.5.1.133.

START

integer value

the acquisitio
may have the

quire data at e

quire data at
ngs

n is the numb

rk: To start th
g send a broa

etup Logge

uisitions

 //

 //

G 1;} // S

// e

60

0003; /

//

STARTLO

LOGGER

e 1 or 2

on of the varia
following val

each current l

each position

ber of samplin

he data acqu
dcast messag

er Variable

is set to

Save data

Save data

Start multi

every curre

07

//Reset bi

/and 1 of v

G

ables selecte
ues:

oop sampling

n/speed samp

ngs between

uisition simulta
ge with the S

es, the nu

1

every cur

every pos

i-axis log

ent loop s

ts 4 to 7,

var1

ed in the Setu

g or from n to

pling loop or f

two consecu

aneously on
TARTLOG co

umber of sa

rrent loop

sition/spee

gging. The

sampling

MPD U

, set bits

up Logger V

o n current loo

from n to n p

tive data acq

all the axes
ommand.

amplings b

sampling

ed loop sa

data is s

User Manual

 0

Variables dial

op samplings

position/speed

uisitions.

for multi-axis

between

ampling

saved at

logue.

d loop

s data

© ElectroC

Syntax

STOPLO

Operands

Binary co

Descripti

Remark:

Example
ST

[b

Craft 2013

6.2

G

s –

ode

on Stops t
dialogu
Logger

To stop the
with the

TOPLOG;

b]{STOPLOG

2.5.1.134.

STOP LO

the data acq
ue. To upload
r | Upload Da

data acquisit
e STOPLOG

 // Stop t

;} //

60

STOPLOG

OGGER

quisition of th
d and plot th
ata menu com

tion on all the
command.

the data ac

Stop the d

08

G

he variables
he data save
mmand.

e axes for mu

cquisition

data acqui

selected in
ed in the driv

ulti-axis loggin

n on the cu

isition on

MPD U

the Setup L
ve’s acquisiti

ng, send a b

urrent axi

all the a

User Manual

Logger Vari
ion buffer us

roadcast mes

is

axes.

ables
se the

ssage

© ElectroC

Syntax

STA

Operands

Binary co

Descripti

Example

MO

TU

SE

UP

SE

SE

SE

SE

ST

Craft 2013

6.2

s –

ode

on Sets th
positio
when t
actual

Remar
TUM1
and sp
load sp

ODE PC;

UM1;

EG 100U, 5

PD;

EG 100U, 5

EG 100U, -

EG 100U, 1

EG 0, 0.;

TA;

2.5.1.135.

S

he value of th
on i.e. TPOS
the load/moto
load position

rk: The STA
(i.e. using th

peed are both
peed: TPOS =

 //S

.00000;

.00000;

20.00000;

0.00000;

//Set tar
posi

60

STA

Set Target po

e target posit
= APOS_LD

or is still follo
.

 command is
he default targ
h updated wit
= APOS_LD

Set Positio

//Set t

//Set 1

//positi

//the ne

//Updat

//Set 2

//Set 3

//Set 4

//End o

rget posit
ition value

09

osition = Actu

tion (the posit
D. The comm
owing a hard

automatically
get update m
th the actual
and TSPD =

on Contour

target upd

1st motion

ion refere

ext 100 sa

te immedia

2st motion

3st motion

4st motion

of contour

tion value
e (APOS_LD

al position

tion reference
mand may be

stop, to repo

y done if the n
mode TUM0).

values of the
ASPD_LD.

ring Mode 2

date mode 1

n segment.

nce with 5

mpling per

ate

n segment.

n segment.

n segment.

ring mode

e (TPOS)
D)

MPD U

e) to the value
e used in clo
osition the tar

next motion m
In this case

e load positio

2

1

Increment

5 counts f

riods

equal to

User Manual

e of the actua
osed loop sys
rget position

mode is set w
the target po

on and respec

t

or

//the ac

al load
stems
to the

without
osition
ctively

ctual

© ElectroC

Syntax

STOP!

Operands

Binary co

Descripti

Example:

//

//

CA

CS

MO

TU

UP

!I

ST

WA

Craft 2013

6.2

s –

ode

on Execut

:

/ Move at

/ Position

ACC = 0.31

SPD = 33.3

ODE SP;

UM1; //set

PD; //exe

IN#36 0; /

TOP!; //St

AIT!; //Wa

2.5.1.136.

S

tes a STOP c

constant s

n feedback:

83; //acce

333;//jog

 Target Up

ecute immed

/ Set even

op the mot

it until t

61

STOP

STOP motion

command whe

speed and

: 500 line

eleration r

speed = 10

pdate Mode

diate

nt: when in

tion when e

the event o

0

n on event

en a program

stop when

es encoder

rate = 100

000[rpm]

1

nput #36 g

event occu

occurs

mmed event o

input 36

(2000 cou

00[rad/s^2]

goes low

urs

MPD U

ccurs.

goes low.

unts/rev)

]

User Manual

© ElectroC

Syntax

TUM0

TUM1

Operands

Binary co

Descripti

Craft 2013

6.2

s –

ode

on Sets th
startin

After a
traject

After a
referen
TSPD=

By def
activat
setting

As a g
followi

• Re
ma
refe
pos

• Pre
elim

• Wh

• If y
com
con

2.5.1.137.

S

S

he target upd
g a new motio

a TUM1 com
ory starting fr

a TUM0 com
nces with the
=ASPD_LD)

fault, each co
te the TUM1
g the motion m

general rule, T
ng situations

covery from
ay occur betw
erence gene
sition and spe

ecise relative
minate the fol

hen you start

you switch fro
mputed by the
ntrol

61

TUM

Set Target Up

Set Target Up

ate mode 0 o
on mode.

mmand, the
rom the actua

mmand, the re
e actual value
and then star

ommand setti
 mode, exec

mode and BE

TUM1 mode
:

an error set
ween the las
rator before
eed

positioning fr
lowing error

/ stop your m

om a torque
e reference g

1

pdate Mode 0

pdate Mode 1

or 1. The TUM

reference ge
al values of po

eference gen
es of the load
rts to compute

ng a motion
cute the MP
FORE the UP

is recommen

tting AXISOF
st target pos
the AXISOF

rom the point

motor using on

control mode
generator) to a

0

1

M0 and TUM1

enerator com
osition and sp

nerator first u
d position and
e the new mo

mode activat
PL instruction
PD command

nded for norm

FF command
sition and sp
F and the a

t where the lo

nly AXISON /

e (where targ
a motion mod

MPD U

1 instructions

mputes the n
peed referenc

pdates the p
d speed (TPO
otion mode tra

tes the TUM0
 TUM1 AFT

d.

mal operation

d, where sign
peed values
actual values

oad/motor ha

AXISOFF co

get position a
de performing

User Manual

offer 2 choic

new motion
ce.

position and s
OS=APOS_LD
ajectory.

0 mode. In ord
TER the com

. Use TUM0

nificant differe
computed b
of the load/

s hit a marke

mmands

and speed ar
g position or s

ces for

mode

speed
D and

der to
mmand

in the

ences
by the
/motor

er – to

re not
speed

© ElectroCraft 2013 612 MPD User Manual

Remark: In open loop control of steppers, TUM0 is ignored as there is no position and/or
speed feedback

The instructions become effective at the next update command UPD.

Example1:

// Start a position profile with TUM1. Position feedback:

// 500 lines incremental encoder (2000 counts/rev)

CACC = 0.3183; //acceleration rate = 1000[rad/s^2]

CSPD = 33.3333; //slew speed = 1000[rpm]

CPOS = 6000; //position command = 3[rot]

CPR; //position command is relative

SRB ACR 0xFFFF, 0x800; // and additive

MODE PP; // set trapezoidal position profile mode

TUM1; //set Target Update Mode 1

UPD; //execute immediate

Example2:

// Start a position profile with TUM0. Position feedback:

// 500 lines incremental encoder (2000 counts/rev)

CACC = 0.3183; //acceleration rate = 1000[rad/s^2]

CSPD = 33.3333; //slew speed = 1000[rpm]

CPOS = 6000; //position command = 3[rot]

CPR; //position command is relative

SRB ACR 0xFFFF, 0x800; // and additive

MODE PP; // set trapezoidal position profile mode

// No need to set TUM0 before UPD as MODE PP does it automatically

UPD; //execute immediate

© ElectroC

Syntax

UPD!

Operands

Binary co

Descripti

Example

//

//

CA

CS

MO

TU

UP

!R

CS

UP

WA

Craft 2013

6.2

s –

ode

on Execut

/ Start a

/ Position

ACC = 0.15

SPD = 40;/

ODE SP;

UM1;//set

PD;//execu

RT 3000; /

SPD = 20;/

PD!;//Upda

AIT!; //Wa

2.5.1.138.

U

tes an UPD c

speed prof

 feedback:

91;//accel

/jog speed

Target Upd

te immedia

/ set even

/jog speed

te on even

it until t

61

UPD

UPDate motio

command whe

file and ch

: 500 lines

leration ra

d = 1200[rp

date Mode 1

ate

nt after a

d = 600[rpm

nt

the event o

3

on on event !

en a program

hange spee

s encoder

ate = 500[

pm]

1

wait time

m]

occurs

mmed event oc

ed after 3

(2000 coun

[rad/s^2]

e of 3s

MPD U

ccurs.

seconds.

nts/rev)

User Manual

© ElectroC

Only avai

Syntax

VPLANE

Operands

Binary co

Descripti

Example

// 2D

//incr

 SETMOD

 VPLANE

 RESRAT

 RESRAT

 NLINES

 MODE V

 // Ci
angle in

 CIRCLE

 UPD; /

 // Ins

 VSEG1

 WMC (A

Craft 2013

6.2

lable on multi

(X_axis, Y_a

s X_axis

ode

on Sets th
X_axis,

linear in

remental e

DE 0xCF00;

E (A, B, C

TIOX=0u;

TIOY=0u;

STAN=2000;

VM; // Set

ircular se
ncrement 3

E1 1L, 360

//Execute

sert End S

0L, 0L; V

A, B, C);

2.5.1.139.

i-axis Motion

axis, Tangent_

s, Y_axis, Tan

he 2D coordi
, Y_axis. and

nterpolated

encoder

; //Clear b

C);// X_axi

;

t Vector Mo

egment of
360[deg])

0.; CIRCLE2

immediate

Segment

VSEG2 0L, 0

// wait fo

61

VPLANE

Controller

_axis) Vecto

ngent_axis: sl

inate system
d Tangent_ax

d profile.

buffer

is = A, Y_

ode

radius 3.

2 1L, 0.;

0L;

or motion

4

or PLANE

lave axes def

m for Vector
xis.

 Position

_axis = B a

14159[mm],

completion

fining the coo

Mode using

feedbacks

and Tangen

, with in

n

MPD U

ordinate syste

the slave ax

s: 500 line

nt_axis = C

nitial ang

User Manual

em

xes specified

es

C

le 0[deg]

d with

and

© ElectroC

Only avai

Syntax

VSEG1 P

VSEG2 P

Operands

Binary co

Descripti

Craft 2013

6.2

lable on multi

Pos_X, Pos_Y

Pos_X, Pos_Y

s Pos_X

Pos_Y

ode

on VSEG1

Based
parame

If the po
actual p

2.5.1.140.

i-axis Motion

Y

Y

X: X axis posit

Y: Y axis posit

1 and VSEG2

on Radius,
eters used by

oints are sen
parameters o

61

VSEG

Controller

Vector li

tion incremen

tion incremen

 define a line

Theta_inc a
 the motion c

t from a host
f a path segm

5

near SEGme

nt for 2D trajec

nt for 2D trajec

ar segment fo

and Theta_st
ontroller to ge

then the follo
ment:

ent

ctory

ctory

or 2D trajecto

tart the MPL
enerate the P

owing relation

MPD U

ory executed

L compiler f
PVT points for

ns must be us

User Manual

in Vector Mod

from the a
r slave axes.

sed to compu

de.

actual

te the

© ElectroCraft 2013 616 MPD User Manual

Example

// 2D linear interpolated profile. Position feedbacks: 500 lines

//incremental encoder

 SETMODE 0xCF00; //Clear buffer

 LPLANE (A, C); //Slaves A and C define the coordinate system

 MODE LI; // Set Linear Interpolation Mode

 // Increment position with (X, Y) = (0.5[rot], 0.05[rot])

 LPOS1 1000L, 100L; LPOS2 1000L, 100L;

 UPD; //Execute immediate

 // Increment position with (X, Y) = (0.05[rot], 0.5[rot])

 LPOS1 100L, 1000L; LPOS2 100L, 1000L;

 // Increment position with (X, Y) = (0.5[rot], 0.1[rot])

 LPOS1 1000L, 200L; LPOS2 1000L, 200L;

 // Increment position with (X, Y) = (0.5[rot], 0.5[rot])

 LPOS1 1000L, 1000L; LPOS2 1000L, 1000L;

© ElectroC

Syntax

WAIT!

WAIT! va

Operands

Binary co

Descripti

Example1

//

//

//

CS

CP

CP

MO

UP

!M

WA

//

//

//

Craft 2013

6.2

alue32

s value3

ode

on Stops t
only the
also sp
comma
is interr
instruct

1

/ Uncondit

/ Position

/ encoder

SPD = 10;/

POS = 4000

PR;//posit

ODE PP;

PD;//execu

MC; // set

AIT!; //wa

/ if the f

/ not set

/ the MPL

2.5.1.141.

WAIT m

WAIT m

32: 32-bit long

he MPL prog
e MPL comm
pecify the tim
and: value32.
rupted; the ev
tion. The time

ional wait

 profile.

(2000 coun

/slew spee

;//positio

ion comman

te immedia

 motion co

it for the

inal posit

because th

program wi

61

WAIT!

otion event !

otion event !

g immediate v

ram executio
mands receive
meout limit f
 If the monito
vent checking

eout is measu

t for a mot

Position f

nts/rev)

ed = 300[rp

on command

nd is relat

ate

omplete eve

e programme

tion is not

he settle b

ill remain

7

but exit if time

value – wait lo

on, until the pr
ed via a comm
for the wait,
ored event do
g is reset and

ured in interna

tion compl

feedback:

pm]

= 2[rot]

tive

ent

ed event t

t reached

band and t

at this p

e > value32

oop timeout li

rogrammed e
munication ch

by adding a
oesn’t occur in
d the MPL pr
al time units i.

lete event

500 lines

to occur

or the mot

time condit

point

MPD U

mit

event occurs.
hannel are pro
a time value
n the time lim
rogram passe
.e. slow loop

increment

tion compl

tions are

User Manual

During this p
ocessed. You
e after the W
it set, the wai

es to the next
sampling per

tal

lete is

not met

period,
u may
WAIT!
it loop
t MPL
riods.

© ElectroCraft 2013 618 MPD User Manual

Example2

//Conditional wait for a limit switch event

// Speed profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.1591;//acceleration rate = 500[rad/s^2]

CSPD = 40; //jog speed = 1200[rpm]

MODE SP;

TUM1; //set Target Update Mode 1

UPD;//execute immediate

ENLSP1; // activate LSP input to detect low->high transitions

!LSP; // set event of LSP transition

WAIT! 5000; //Wait until the event occurs but no more than 5[s]

STOP; // stop motion

© ElectroC

Syntax

WAMPU

WAMPU

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

(Slave), value

(Slave), VAR

s Slave:

VAR32

value3

ode

on Sets t
contro
value
can do

• Ch
co

• St

The pr
for wai

n Activat
value3
event
progra

2.5.1.142.

e32 Wait

R32 Wait

slave axis m

2: long variab

32: 32-bit long

the event co
ller until the s
or the value

o the following

hange the m
ommand UPD

op the motion

rogrammed e
it expires.

tes the monit
32, respective

on the slav
ammed event

61

WAMPU

for slave’s Ab

for slave’s Ab

onitored for e

ble

g immediate v

ondition and
slave’s motor
of the specif

g actions:

motion mode
D!

n of slave axe

event is autom

oring of the e
ely VAR32. Th
ve axis occu
that has occu

9

bsolute Motor

bsolute Motor

event occurre

value

halts the ex
r absolute po
fied variable.

and/or the

es when the e

matically eras

event on the s
he motion con
urs or it tim
urred.

r Position Und

r Position Und

nce

xecution of th
sition becom
After you ha

parameters

event occurs,

sed when the

slave axis, w
ntroller applic

meouts. This

MPD U

der value32

der VAR32

he MPL prog
es equal or u

ave programm

when the e

with comman

e event occur

when motor ab
cation remains

operation e

User Manual

gram from m
under the spe
med an even

event occurs,

nd STOP.

rs or if the tim

bsolute positio
s in a loop un

erases a pre

motion
ecified
t, you

, with

meout

on <=
ntil the
evious

© ElectroCraft 2013 620 MPD User Manual

Example

//Stop slave B and C when the motor position <= -3 rev on slave A

//Position feedback: 500 lines encoder (2000 counts/rev)

// Wait for event : When axis A motor absolute position is

// equal or under value -3 rot

WAMPU (A), -6000L;

(B,C) {

 STOP; // Stop motion with acceleration / deceleration set

}

© ElectroC

Syntax

WAMPO

WAMPO

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

(Slave) value

(Slave) VAR3

s Slave:

VAR32

value3

ode

on Sets t
contro
value
can do

• Ch
co

• St

The pr
for the

n Activat
value3
event
progra

2.5.1.143.

e32 Wait for

32 Wait for

slave axis m

2: long variab

32: 32-bit long

the event co
ller until the
or the value

o the following

hange the m
ommand UPD

op the motion

rogrammed e
 wait expires.

tes the monit
32, respective

on the slav
ammed event

62

WAMPO

slave’s Abso

slave’s Abso

onitored for e

ble

g immediate v

ondition and
slave’s moto
of the specif

g actions:

motion mode
D!

n of slave axe

event is autom
.

oring of the e
ely VAR32. Th
ve axis occu
that has occu

21

lute Motor Po

lute Motor Po

event occurre

value

halts the ex
r absolute po
fied variable.

and/or the

es when the e

matically eras

event on the s
he motion con
urs or it tim
urred.

osition Over v

osition Over V

nce

xecution of th
osition becom
After you ha

parameters

event occurs,

sed when the

slave axis, w
ntroller applic

meouts. This

MPD U

value32

VAR32

he MPL prog
mes equal or
ave programm

when the e

with comman

e event occur

when motor ab
cation remains

operation e

User Manual

gram from m
over the spe

med an even

event occurs,

nd STOP.

rs or if the tim

bsolute positio
s in a loop un

erases a pre

motion
ecified
t, you

, with

meout

on >=
ntil the
evious

© ElectroCraft 2013 622 MPD User Manual

Example

//Reverse motion on B slave when motor position >= 1rev on C slave

//Position feedback: 500 lines encoder (2000 counts/rev)

(B) {

 //Speed profile on B slave

 CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

 CSPD = 3.3333;//jog speed = 100[rpm]

 MODE SP;

 TUM1; //set Target Update Mode 1

 UPD; // execute immediate

 }

CSPD = -40; //jog speed = -1200[rpm]

(B)CSPD = CSPD; //Send the local variable CSPD to variable CSPD of

// slaves (B)

// Wait for event : When axis C motor absolute position is equal

// or over value 1 rot

WAMPO (C), 2000L;

(B) {

 UPD; // Update immediate. Speed command is reversed

}

Remark: You can activate a new motion on a programmed event in 2 ways:

• Set UPD! command then wait for event occurrence. This will activate the new motion
immediately when the event occurs

• Wait the event then update the motion with UPD. This will activate the new motion
with a slight delay compared with the first option

© ElectroC

Syntax

WALPU (

WALPU (

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

(Slave) value3

(Slave) VAR3

s Slave:

VAR32

value3

ode

on Sets t
contro
value
can do

• Ch
co

• St

The pr
for the

n Activat
value3
event
progra

2.5.1.144.

32 Wait for s

32 Wait for s

slave axis m

2: long variab

32: 32-bit long

the event co
ller until the
or the value

o the following

hange the m
ommand UPD

op the motion

rogrammed e
e wait expires

tes the monit
32, respective

on the slav
ammed event

62

WALPU

slave’s Absol

slave’s Absol

onitored for e

ble

g immediate v

ondition and
slave’s load
of the specif

g actions:

motion mode
D!

n of slave axe

event is autom
.

toring of the
ely VAR32. Th
ve axis occu
that has occu

23

ute Load Pos

ute Load Pos

event occurre

value

halts the ex
absolute pos
fied variable.

and/or the

es when the e

matically eras

event on the
he motion con
urs or it tim
urred.

sition Under v

sition Under V

nce

xecution of th
sition become

After you ha

parameters

event occurs,

sed when the

slave axis, w
ntroller applic

meouts. This

MPD U

value32

VAR32

he MPL prog
es equal or u
ave programm

when the e

with comman

e event occur

when load ab
cation remains

operation e

User Manual

gram from m
under the spe
med an even

event occurs,

nd STOP.

rs or if the tim

bsolute positio
s in a loop un

erases a pre

motion
ecified
t, you

, with

meout

on <=
ntil the
evious

© ElectroCraft 2013 624 MPD User Manual

Example

//Set the speed command when load absolute position is <= 10 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

// Wait for event : When axis B load absolute position is equal

// or under value 10 rot

CSPD = 13.3333;//new slew speed command = 500[rpm]

WALPU (B), 20000L;

(C)CSPD = CSPD; //Send the local variable CSPD to variable CSPD

// of slaves (C)

© ElectroC

Syntax

WALPO (

WALPO (

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

(Slave), value

(Slave), VAR3

s Slave:

VAR32

value3

ode

on Sets t
contro
value
can do

• Ch
co

• St

The pr
for the

n Activat
value3
event
progra

2.5.1.145.

e32 Wait slav

32 Wait slav

slave axis m

2: long variab

32: 32-bit long

the event co
ller until the
or the value

o the following

hange the m
ommand UPD

op the motion

rogrammed e
 wait expires.

tes the monit
32, respective

on the slav
ammed event

62

WALPO

ve’s Absolute

ve’s Absolute

onitored for e

ble

g immediate v

ondition and
slave’s load
of the specif

g actions:

motion mode
D!

n of slave axe

event is autom
.

toring of the
ely VAR32. Th
ve axis occu
that has occu

25

e Load Positio

e Load Positio

event occurre

value

halts the ex
absolute pos

fied variable.

and/or the

es when the e

matically eras

event on the
he motion con
urs or it tim
urred.

on Over value

on Over VAR

nce

xecution of th
sition becom
After you ha

parameters

event occurs,

sed when the

slave axis, w
ntroller applic

meouts. This

MPD U

e32

R32

he MPL prog
mes equal or
ave programm

when the e

with comman

e event occur

when load ab
cation remains

operation e

User Manual

gram from m
over the spe

med an even

event occurs,

nd STOP.

rs or if the tim

bsolute positio
s in a loop un

erases a pre

motion
ecified
t, you

, with

meout

on >=
ntil the
evious

© ElectroCraft 2013 626 MPD User Manual

Example

//Stop all slaves when load position on slave B >= 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

 TIMEOUT 1000L; // Set wait timeout to 1[s]

// Wait for event : When axis B motor absolute position is equal

// or over value 1 rot

 WAMPO (B), 6000L;

 STOP; // Stop the motion

© ElectroC

Syntax

SAVEER

Operands

Binary co

Descripti

Example
// Ret

 LONG e

 GETERR

 SAVEER

 GETERR

 SAVEER

 GETERR

 SAVEER

 SEND e

Craft 2013

6.2

ROR VAR32

s VAR32

ode

on Saves t
hold up
is overw
comma

trieve old

error_code

ROR error_

RROR error

ROR error_

RROR error

ROR error_

RROR error

error_code

2.5.1.146.

2: 32-bit long

the slave erro
p to 8 error co
written. The

and.

dest 3 erro

e; //define

_code; //Re

r_code; //

_code; //Re

r_code; //

_code; //Re

r_code; //

e; // Send

62

SAVEERR

GET old

variable cont

or from VAR3
odes. If the bu
content of VA

ors and sa

e variable

ead oldest

Save the

ead second

Save the

ead third

Save the

third err

27

ROR

est ERROR f

taining the sla

32 in a circula
uffer is full an
AR32 must b

ave them in

e error_cod

t error fro

error in t

d error fro

error in t

error from

error in t

ror code to

from RAM

ave error

ar buffer locat
nd a new erro
be initialized

n the EEPR

de

om motion

the motion

om motion

the motion

m motion c

the EEPROM

o the host

MPD U

ted in EEPRO
or is saved th
using the GE

ROM

controller

n controlle

controller

n controlle

controller

M

t

User Manual

OM. The buffe
en the oldest
ETERROR V

r RAM

er EEPROM

r RAM

er EEPROM

RAM

er can
t error

VAR32

© ElectroC

Syntax

GETERR

GETERR

Operands

Binary co

Descripti

Example
// Ret

 LONG e

 GETERR

 SAVEER

 GETERR

 SAVEER

 GETERR

 SAVEER

 GETERR

 SEND e

Craft 2013

6.2

ROR VAR32

ROR n,VAR32

s VAR32

n : erro

ode

on The mo
can hol
will ove
retrieve
VAR32
when th

The GE
drive. T
oldest e
comma

trieve old

error_code

ROR error_

RROR error

ROR error_

RROR error

ROR error_

RROR error

ROR 1, err

error_code

2.5.1.147.

2

2: 32-bit long

or position in

otion controlle
ld up to 8 erro
erwrite the old
es the oldest
. Once it was
he buffer is em

ETERROR n,
The errors ar
entry and n =

and SAVEERR

dest 3 erro

e; //define

_code; //Re

r_code; //

_code; //Re

r_code; //

_code; //Re

r_code; //

ror_code; /

e; // Send

62

GETERRO

GET old

GET n-th

variable to st

the circular b

er uses a circ
or codes. If an
dest one. The
t error from t
s read the bu
mpty.

, VAR32 retri
re stored in a
= 7 newest e
ROR comma

ors and sa

e variable

ead oldest

Save the

ead second

Save the

ead third

Save the

// Retriev

third err

28

OR

est ERROR f

h ERROR fro

tore the error

uffer

cular buffer in
n error is rece

e buffer is rea
the motion c
uffer entry is

ieves n-th err
a circular buff
entry. The err
nd.

ave them in

e error_cod

t error fro

error in t

d error fro

error in t

error from

error in t

ve second e

ror code to

from RAM

om EEPROM

n RAM to stor
eived and the

ad with GETE
controller RAM

released. GE

ror stored in
fer that can h
rors can be s

n the EEPR

de

om motion

the motion

om motion

the motion

m motion c

the EEPROM

error from

o the host

MPD U

re the slaves’
e buffer is full
RROR VAR3
M. The error
ETERROR VA

the non-vola
hold up to 8
saved in the

ROM

controller

n controlle

controller

n controlle

controller

M

m the EEPRO

t

User Manual

’ errors. The
then the new

32 command
r code is sav
AR32 returns

tile memory
error codes,
EEPROM wit

r RAM

er EEPROM

r RAM

er EEPROM

RAM

OM

buffer
w error

which
ved in
s zero

of the
n = 0
th the

© ElectroC

Syntax

WVDU va

WVDU VA

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

alue32

AR32

s VAR32

value3

ode

on Sets t
contro
bit var

• Ch
co

• St

The pr
for wai

n Activat
VAR32
timeou

2.5.1.148.

Wait Vecto

Wait Vecto

2: long variab

32: 32-bit long

the event co
ller until the v
iable. After yo

hange the m
ommand UPD

op the motion

rogrammed e
it expires.

tes the moni
2. The motion
uts. This oper

62

WVDU

or Distance U

or Distance U

ble

g immediate v

ondition and
vector distanc
ou have progr

motion mode
D!

n when the ev

event is autom

itoring of the
n controller a
ation erases

29

Under value32

Under VAR32

value

halts the ex
ce is equal or
rammed an e

and/or the

vent occurs, w

matically eras

e event when
application re
a previous pr

2

xecution of th
under the sp

event, you can

parameters

with command

sed when the

n vector dist
emains in a lo
rogrammed e

MPD U

he MPL prog
pecified value
n do the follow

when the e

d STOP.

e event occur

tance <= val
oop until the
vent that has

User Manual

gram from m
or the value

wing actions:

event occurs,

rs or if the tim

ue32, respec
event occurs
 occurred.

motion
of 32-

, with

meout

ctively
s or it

© ElectroC

Syntax

WCAP1 (

WCAP0 (

Operands

Binary co

Descripti

Craft 2013

6.2

(Slave) W

(Slave) W

s Slave:

ode

on Sets t
contro
axis. W

• The
det

• Mo
exc
ins

• Ma
MP
enc

The se
in CAP
and fo
maste

After y

• Ch
co

• St

The pr
for the

2.5.1.149.

Wait for slave’s

Wait for slave’s

slave axis m

the event co
ller until the t

When the prog

e input capa
tect another t

otor position A
cept the case
tead

aster position
PL variable C
coder on the

election betwe
PPOS2 only f
resee a trans
r position is s

you have prog

hange the m
ommand UPD

op the motion

rogrammed e
 wait expires.

63

WCAP

s 1st CAPture

s 1st CAPture

onitored for e

ondition and
transition occ
grammed tran

ability to dete
ransition

APOS_MT is
e of open-loo

APOS2 or lo
CAPPOS2, ex

load, when lo

een master a
for setup conf
smission ratio
saved in CAP

grammed an e

motion mode
D!

n when the ev

event is autom
.

30

e input transit

e input transit

event occurre

halts the ex
curs on the 1s
nsition occurs

ect transitions

captured and
op systems, w

oad position A
xcept the cas
oad position is

nd load posit
figurations wh

o between the
POS2

event, you ca

and/or the

vent occurs, w

matically eras

tion 0 to 1

tion 1 to 0

nce

xecution of th
st capture/enc
s the following

s is disabled

d memorized
where referen

APOS_LD is
se of stepper
s captured in

tion is done a
hich use diffe
em. For all the

an do the follo

parameters

with command

sed when the

MPD U

he MPL prog
coder index i
g happens on

. It must be

d in the MPL v
nce position

captured and
rs controlled
CAPPOS.

s follows: loa
erent sensors
e other setup

owing actions

when the e

d STOP.

e event occur

User Manual

gram from m
nputs on the

n the slave ax

enabled aga

variable CAP
TPOS is cap

d memorized
open loop w

ad position is s
for load and
configuration

:

event occurs,

rs or if the tim

motion
slave

xis:

ain to

PPOS,
ptured

in the
ith an

saved
motor

ns, the

, with

meout

© ElectroCraft 2013 631 MPD User Manual

Execution Activates the monitoring of the event, when the programmed transition (low to high or
high to low) occurs on the 1st capture/encoder index input. The motion controller
application remains in a loop until the event on the slave axis occurs or it timeouts. This
operation erases a previous programmed event that has occurred.

Example

//Stop motion on all slaves on next encoder index

// Wait for event : When axis A encoder index goes low->high

WCAP1 (A);

STOP; //Stop the motion

(A) { // Command slave A to move on captured position

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

}

WMC (A); //wait for completion

© ElectroC

Syntax

WVDO va

WVDO VA

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

alue32

AR32

s VAR32

value3

ode

on Sets t
contro
bit var

• Ch
co

• St

The pr
for wai

n Activat
VAR32
timeou

2.5.1.150.

Wait Vecto

Wait Vecto

2: long variab

32: 32-bit long

the event co
ller until the v
iable. After yo

hange the m
ommand UPD

op the motion

rogrammed e
it expires.

tes the moni
2. The motion
uts. This oper

63

WVDO

or Distance U

or Distance U

ble

g immediate v

ondition and
vector distanc
ou have progr

motion mode
D!

n when the ev

event is autom

itoring of the
n controller a
ation erases

32

Under value32

Under VAR32

value

halts the ex
ce is equal or
rammed an e

and/or the

vent occurs, w

matically eras

e event when
application re
a previous pr

2

xecution of th
r over the spe

event, you can

parameters

with command

sed when the

n vector dist
emains in a lo
rogrammed e

MPD U

he MPL prog
ecified value
n do the follow

when the e

d STOP.

e event occur

tance >= val
oop until the
vent that has

User Manual

gram from m
or the value
wing actions:

event occurs,

rs or if the tim

ue32, respec
event occurs
 occurred.

motion
of 32-

, with

meout

ctively
s or it

© ElectroC

Syntax

WTR (Sla

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

ave)

s Slave:

ode

on Sets t
contro
event,

• Ch
co

• St

The pr
for wai

n Activat
applica
previou

2.5.1.151.

Wait Targe

slave axis m

the event co
ller until the s
you can do t

hange the m
ommand UPD

op the motion

rogrammed e
it expires.

tes the mon
ation remains
us programm

63

WTR

et Reached

onitored for e

ondition and
slave axis rea
he following a

motion mode
D!

n when the ev

event is autom

nitoring of th
s in a loop unt

med event that

33

event occurre

halts the ex
aches the targ
actions:

and/or the

vent occurs, w

matically eras

he event wh
til the event o
t has occurred

nce

xecution of th
get position.

parameters

with command

sed when the

en target re
occurs or it tim
d.

MPD U

he MPL prog
After you hav

when the e

d STOP.

e event occur

eached. The
meouts. This o

User Manual

gram from m
ve programm

event occurs,

rs or if the tim

motion con
operation era

motion
ed an

, with

meout

ntroller
ases a

© ElectroC

Syntax

WPRU (S

WPRU (S

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

Slave), value3

Slave), VAR32

s Slave:

VAR32

value3

ode

on Sets t
contro
the va
followi

• Ch
co

• St

The pr
for the

Remar
occurs
may ov

n Activat
VAR32
axis oc
occurr

2.5.1.152.

32 Wait fo
value32

2 Wait for

slave axis m

2: long variab

32: 32-bit long

the event co
ller until the
lue of the spe
ng actions:

hange the m
ommand UPD

op the motion

rogrammed e
 WAIT! comm

rk: After sett
s using WAIT
verride the ev

tes the monit
2. The motion
ccurs or it tim
ed.

63

WPRU

or slave’s P

slave’s Posit

onitored for e

ble

g immediate v

ondition and
when the po
ecified variab

motion mode
D!

n when the ev

event is autom
mand expires

ting UPD! or
T!, otherwise,
vent monitorin

toring of the
n controller a

meouts. This o

34

Position Re

tion Referenc

event occurre

value

halts the ex
sition referen

ble. After you

and/or the

vent occurs, w

matically eras
.

r STOP! you
the program

ng.

event, when
application rem
operation era

ference Und

ce Under VAR

nce

xecution of th
nce is equal o
have program

parameters

with command

sed when the

u need to wa
m will continue

position refe
mains in a lo
ases a previo

MPD U

der

R32

he MPL prog
or under the
mmed an eve

when the e

d STOP.

e event occur

ait until the p
e with the ne

erence <= val
oop until the e
ous programm

User Manual

gram from m
specified va

ent, you can d

event occurs,

rs or if the tim

programmed
xt instruction

lue32, respec
event on the

med event tha

motion
lue or
do the

, with

meout

event
ns that

ctively
slave

at has

© ElectroCraft 2013 635 MPD User Manual

Example:

//Stop motion when position reference >= 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

WPRU 6000; //Set event: when position reference is >= 3 rev

STOP;//Stop the motion when the event occurs

© ElectroC

Syntax

WPRO (S

WPRO (S

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

Slave), value3

Slave), VAR32

s Slave:

VAR32

value3

ode

on Sets t
contro
value
followi

• Ch
co

• St

The pr
for wai

n Activat
VAR32
axis oc
occurr

2.5.1.153.

32 Wait

2 Wait

slave axis m

2: long variab

32: 32-bit long

the event co
ller until the
of the specif
ng actions:

hange the m
ommand UPD

op the motion

rogrammed e
it expires.

tes the monit
2. The motion
ccurs or it tim
ed.

63

WPRO

for slave’s P

for slave’s Po

onitored for e

ble

g immediate v

ondition and
slave’s positi
fied variable.

motion mode
D!

n when the ev

event is autom

toring of the
n controller a

meouts. This o

36

Position Refer

osition Refere

event occurre

value

halts the ex
ion reference
After you ha

and/or the

vent occurs, w

matically eras

event, when
application rem
operation era

rence Over va

ence Over VA

nce

xecution of th
e is equal or
ave programm

parameters

with command

sed when the

position refe
mains in a lo
ases a previo

MPD U

alue32

AR32

he MPL prog
over the spe
med an even

when the e

d STOP.

e event occur

erence >= val
oop until the e
ous programm

User Manual

gram from m
ecified value o
nt, you can d

event occurs,

rs or if the tim

lue32, respec
event on the

med event tha

motion
or the
do the

, with

meout

ctively
slave

at has

© ElectroCraft 2013 637 MPD User Manual

Example:

//Stop motion on all slaves when position reference on slave C >=

// 3 rev. Position feedback: 500 lines encoder (2000 counts/rev)

// Wait for event : When position reference on axis C is equal or

// over value 3rot

WPRO (C), 6000L;

STOP; //Stop the motion

© ElectroC

Syntax

WMSU (S

WMSU (S

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

Slave), value3

Slave), VAR32

s Slave:

VAR32

value3

ode

on Sets th
until th
variab

• Ch
co

• St

The pr
for wai

n Activat
The m
occurs
occurr

2.5.1.154.

32

2

slave axis m

2: fixed variab

32: 32-bit fixed

he event con
he motor spee
le. After you h

hange the m
ommand UPD

op the motion

rogrammed e
it expires.

tes the monito
motion contro
s or it timeou
ed.

63

WMSU

Wait
Unde

Wait
Unde

onitored for e

ble

d immediate v

ndition halts th
ed is equal or
have program

motion mode
D!

n when the ev

event is autom

oring of the e
ller applicatio
uts. This ope

38

for slave’s M
r value32

for slave’s M
r VAR32

event occurre

value

he execution
r under the 32

mmed an even

and/or the

vent occurs, w

matically eras

event when m
on remains in
eration erase

Motor Speed

Motor Speed

nce

of the MPL
2-bit value or
nt, you can do

parameters

with command

sed when the

motor speed <
n a loop unt
es a previous

MPD U

d

d

program from
r the value of
o the followin

when the e

d STOP.

e event occur

= value32, re
til the event
s programme

User Manual

m motion con
the specified
g actions:

event occurs,

rs or if the tim

espectively VA
on the slave

ed event tha

ntroller
d fixed

, with

meout

AR32.
e axis
at has

© ElectroCraft 2013 639 MPD User Manual

Example

//Motor on slave A is decelerating. Start a new position profile

// on slave A when motor speed < 600 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

WMSU (A) 20; //Set event: when motor speed is < 600 rpm

// prepare new motion mode

(A) {

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD

};

© ElectroC

Syntax

WMSO (S

WMSO (S

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

Slave), value3

Slave), VAR3

s Slave:

VAR32

value3

ode

on Sets t
contro
specifi
actions

• Ch
co

• St

The pr
for the

n Activat
respec
the sla
that ha

2.5.1.155.

32 Wait fo

2 Wait fo

slave axis m

2: fixed variab

32: 32-bit fixed

the event co
ller until whe
ied fixed varia
s:

hange the m
ommand UPD

op the motion

rogrammed e
 wait expires.

tes the monit
ctively VAR32
ave axis occu
as occurred.

64

WMSO

or slave’s Mot

or slave’s Mot

onitored for e

ble

d immediate v

ondition and
n the motor s
able. After yo

motion mode
D!

n when the ev

event is autom
.

toring of the
2. The motion
rs or it timeo

40

or Speed Ove

or Speed Ove

event occurre

value

halts the ex
speed is equa
ou have prog

and/or the

vent occurs, w

matically eras

event on the
 controller ap
uts. This ope

er value32

er VAR32

nce

xecution of th
al or over the
rammed an e

parameters

with command

sed when the

 slave axis, w
pplication rem
eration erases

MPD U

he MPL prog
 32-bit value
event, you ca

when the e

d STOP.

e event occur

when motor s
mains in a loop
s a previous p

User Manual

gram from m
or the value

an do the follo

event occurs,

rs or if the tim

speed >= val
p until the eve
programmed

motion
of the
owing

, with

meout

lue32,
ent on
event

© ElectroCraft 2013 641 MPD User Manual

Example

//Motor is accelerating. Stop motion on all axes when motor

//speed > 600 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

WMSO (D) 20; //Set event: when motor speed is > 600 rpm

STOP;//Stop the motion when the event occurs

© ElectroC

Syntax

WLSP1

WLSP0

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

s –

ode

on Sets t
switch

• Ch
co

• St

The pr
for the

n Activat
limit sw

2.5.1.156.

Wait for slav

Wait for slav

he event con
 input. After y

hange the m
ommand UPD

op the motion

rogrammed e
 wait expires.

tes monitorin
witch input. Th

64

WLSP

ve’s Limit Sw

ve’s Limit Sw

ndition when
you have prog

motion mode
D!

n when the ev

event is autom
.

g of the even
his operation

42

witch Positive g

witch Positive g

the program
grammed an e

and/or the

vent occurs, w

matically eras

nt when the p
erases a pre

goes from 0 t

goes from 1 t

mmed transiti
event, you ca

parameters

with command

sed when the

programmed t
evious program

MPD U

to 1

to 0

ion occurs a
an do the follo

when the e

d STOP.

e event occur

transition occ
mmed event t

User Manual

t the positive
owing actions

event occurs,

rs or if the tim

curs at the po
that has occu

e limit
s:

, with

meout

ositive
urred.

© ElectroCraft 2013 643 MPD User Manual

Example

//Reverse slave C when positive limit switch is reached

//Position feedback: 500 lines encoder (2000 counts/rev)

(C) {

CACC = 0.0637; //acceleration rate = 200[rad/s^2]

CSPD = 16.6667; //jog speed = 500[rpm]

MODE SP;

UPD; //execute immediate

}

// Wait for event : When axis C positive limit switch goes low->high

WLSP1 (C);

// Wait for event : When motion is completed on axis (C)

WMC (C); //limit switch is active -> quick stop mode active

// wait until the motor stops because only then the

// new motion commands are accepted

(C) {

CSPD = -40; //jog speed = -1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

}

© ElectroC

Syntax

WLSO (S

WLSO (S

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

Slave), value3

Slave,) VAR32

s Slave:

VAR32

value3

ode

on Sets t
contro
specifi
actions

• Ch
co

• St

The pr
for wai

n Activat
The m
occurs
occurr

2.5.1.157.

32 Wait fo

2 Wait fo

slave axis m

2: fixed variab

32: 32-bit fixed

the event co
ller until the
ied fixed varia
s:

hange the m
ommand UPD

op the motion

rogrammed e
it expires.

tes the monit
motion contro
s or it timeou
ed.

64

WLSO

or slave’s Loa

or slave’s Loa

onitored for e

ble

d immediate v

ondition and
load speed

able. After yo

motion mode
D!

n when the ev

event is autom

toring of the e
ller applicatio
uts. This ope

44

ad Speed Ove

ad Speed Ove

event occurre

value

halts the ex
is equal or

ou have prog

and/or the

vent occurs, w

matically eras

event when lo
on remains in
eration erase

er value32

er VAR32

nce

xecution of th
over the 32

rammed an e

parameters

with command

sed when the

oad speed >=
n a loop unt
es a previous

MPD U

he MPL prog
2-bit value or
event, you ca

when the e

d STOP.

e event occur

= value32, re
til the event
s programme

User Manual

gram from m
r the value o
an do the follo

event occurs,

rs or if the tim

espectively VA
on the slave

ed event tha

motion
of the
owing

, with

meout

AR32.
e axis
at has

© ElectroCraft 2013 645 MPD User Manual

Example

//Stop motion when load speed > 600 rpm

//Load Position feedback: 500 lines encoder (2000 counts/rev)

WLSO (A) 20; //Set event: when load speed is > 600 rpm

STOP;//Stop motion on all axes

© ElectroC

Syntax

WLSN1

WLSN0

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

W

W

s –

ode

on Sets t
contro
you ha

• Ch
co

• St

The pr
for the

n Activat
occurs
loop u
previou

2.5.1.158.

Wait for slave’s

Wait for slave’s

the event co
ller until the

ave programm

hange the m
ommand UPD

op the motion

rogrammed e
 wait expires.

tes monitorin
s at the nega
until the even
us programm

64

WLSN

s Limit Switch

s Limit Switch

ondition and
programmed

med an event

motion mode
D!

n when the ev

event is autom
.

ng of the eve
ative limit swit
nt on the sla

med event that

46

h Negative go

h Negative go

halts the ex
transition oc

, you can do t

and/or the

vent occurs, w

matically eras

ent on the sl
tch input. The

ave axis occu
t has occurred

oes from 0 to

oes from 1 to

xecution of th
ccurs at the n
the following

parameters

with command

sed when the

lave axis, wh
e motion con
urs or it time
d.

MPD U

1

0

he MPL prog
negative limit
actions:

when the e

d STOP.

e event occur

hen the prog
ntroller applic
eouts. This o

User Manual

gram from m
switch input.

event occurs,

rs or if the tim

grammed tran
cation remains
operation eras

motion
. After

, with

meout

nsition
s in a
ses a

© ElectroCraft 2013 647 MPD User Manual

Example

//Reverse slave C when negative limit switch is reached

//Position feedback: 500 lines encoder (2000 counts/rev)

(C) {

CACC = 0.0637; //acceleration rate = 200[rad/s^2]

CSPD = -16.6667; //jog speed = -500[rpm]

MODE SP;

UPD; //execute immediate

}

 // Wait for event : When axis C negative limit switch goes low->high

WLSN1 (C);

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

© ElectroC

Syntax

WLSU (S

WLSU (S

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

Slave), value3

Slave), VAR32

s Slave:

VAR32

value3

ode

on Sets t
contro
specifi
actions

• Ch
co

• St

The pr
for wai

n Activat
The m
occurs
occurr

2.5.1.159.

32 Wait for

2 Wait for

slave axis m

2: fixed variab

32: 32-bit fixed

the event co
ller until the s
ied fixed varia
s:

hange the m
ommand UPD

op the motion

rogrammed e
it expires.

tes the monit
motion contro
s or it timeou
ed.

64

WLSU

slave’s Load

slave’s Load

onitored for e

ble

d immediate v

ondition and
slave’s load s
able. After yo

motion mode
D!

n when the ev

event is autom

toring of the e
ller applicatio
uts. This ope

48

Speed Unde

Speed Unde

event occurre

value

halts the ex
peed is equa

ou have prog

and/or the

vent occurs, w

matically eras

event when lo
on remains in
eration erase

er value32

er VAR32

nce

xecution of th
al or under the
rammed an e

parameters

with command

sed when the

oad speed <=
n a loop unt
es a previous

MPD U

he MPL prog
e 32-bit value
event, you ca

when the e

d STOP.

e event occur

= value32, re
til the event
s programme

User Manual

gram from m
 or the value

an do the follo

event occurs,

rs or if the tim

espectively VA
on the slave

ed event tha

motion
of the
owing

, with

meout

AR32.
e axis
at has

© ElectroCraft 2013 649 MPD User Manual

Example

// Start a position profile when load speed < 600 rpm

// Load Position feedback: 500 lines encoder (2000 counts/rev)

WLSU (A) 20; //Set event: when motor speed is < 600 rpm

// prepare new motion mode

(A) {

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD;

 }

© ElectroC

Syntax

WIN#n (S

WIN#n (S

Operands

Binary co

Descripti

Executio

Craft 2013

6.2

Slave), 0

Slave), 1

s Slave:

n: inpu

ode

on Sets t
contro
the co
progra

• Ch
co

• St

The pr
for the

n Activat
(!IN#n
until th
progra

2.5.1.160.

slave axis m

ut line number

the event co
ller until the
ndition of the

ammed an eve

hange the m
ommand UPD

op the motion

rogrammed e
 wait expires.

tes monitoring
0), respectiv

he event on t
ammed event

65

WIN

Wait f

Wait f

onitored for e

r (0<=n<=39)

ondition and
slave’s digita

e input #n is t
ent, you can d

motion mode
D!

n when the ev

event is autom
.

g of the even
vely 1 (!IN#n
he slave axis
that has occu

50

for slave’s Inp

for slave’s Inp

event occurre

)

halts the ex
al input #n be
tested at each
do the followi

and/or the

vent occurs, w

matically eras

nt on the slav
1). The mot

s occurs or it
urred.

put#n is 0

put#n is 1

nce

xecution of th
ecomes 0, re
h slow loop s
ing actions:

parameters

with command

sed when the

ve axis, when
tion controller
 timeouts. Th

MPD U

he MPL prog
spectively 1.

sampling peri

when the e

d STOP.

e event occur

n the digital in
r application
his operation

User Manual

gram from m
The slave c

od. After you

event occurs,

rs or if the tim

nput #n becom
remains in a
erases a pre

motion
hecks

u have

, with

meout

mes 0
a loop
evious

© ElectroCraft 2013 651 MPD User Manual

Example

// Start motion on slave A when digital input #36 from slave C is high

// Wait for event: When axis C digital input 36/IN36 is high

WIN#36 (C), 1;

(A) {

 //Position profile

 CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

 CSPD = 40.;//slew speed = 1200[rpm]

 CPOS = 12000L;//position command = 6[rot]

 CPR; //position command is relative

 MODE PP;

 TUM1; //set Target Update Mode 1

 UPD; // execute immediate

}

WMC (A); // wait for motion completion

© ElectroC

Syntax

W2CAP1

W2CAP0

Operands

Binary co

Descripti

Craft 2013

6.2

 (Slave)

 (Slave)

s Slave:

ode

on Sets t
contro
axis. W

• The
det

• Mo
exc
ins

• Ma
MP
enc

The se
in CAP
and fo
maste

After y

• Ch
co

• St

The pr
for the

2.5.1.161.

Wait for sl

Wait for sl

slave axis m

the event co
ller until the t

When the prog

e input capa
tect another t

otor position A
cept the case
tead

aster position
PL variable C
coder on the

election betwe
PPOS2 only f
resee a trans
r position is s

you have prog

hange the m
ommand UPD

op the motion

rogrammed e
 wait expires.

65

W2CAP

ave’s 2nd CA

ave’s 2nd CA

onitored for e

ondition and
transition occ
grammed tran

ability to dete
ransition

APOS_MT is
e of open-loo

APOS2 or lo
CAPPOS2, ex

load, when lo

een master a
for setup conf
smission ratio
saved in CAP

grammed an e

motion mode
D!

n when the ev

event is autom
.

52

APture input t

APture input t

event occurre

halts the ex
urs on the 2n
nsition occurs

ect transitions

captured and
op systems, w

oad position A
xcept the cas
oad position is

nd load posit
figurations wh

o between the
POS2

event, you ca

and/or the

vent occurs, w

matically eras

transition 0 to

transition 1 to

nce

xecution of th
nd capture/en
s the following

s is disabled

d memorized
where referen

APOS_LD is
se of stepper
s captured in

tion is done a
hich use diffe
em. For all the

an do the follo

parameters

with command

sed when the

MPD U

o 1

o 0

he MPL prog
ncoder index i
g happens on

. It must be

d in the MPL v
nce position

captured and
rs controlled
CAPPOS.

s follows: loa
erent sensors
e other setup

owing actions

when the e

d STOP.

e event occur

User Manual

gram from m
inputs on the
n the slave ax

enabled aga

variable CAP
TPOS is cap

d memorized
open loop w

ad position is s
for load and
configuration

:

event occurs,

rs or if the tim

motion
slave

xis:

ain to

PPOS,
ptured

in the
ith an

saved
motor

ns, the

, with

meout

© ElectroCraft 2013 653 MPD User Manual

Execution Activates the monitoring of the event, when the programmed transition (low to high or
high to low) occurs on the selected capture input. This operation erases a previous
programmed event that has occurred.

Example

//Stop motion on all slaves on next 2nd encoder index

// Wait for event : When axis A 2nd encoder index / home input

//goes low->high

W2CAP1 (A);

STOP; // Stop the motion

(A) { // Command slave A to move on captured position

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

}

WMC (A); //wait for completion

© ElectroCraft 2013 654 MPD User Manual

6.2.6. MPL Registers

6.2.6.1. AAR - Axis Addresses Register (status, RO)

Purpose: AAR is a 16-bit status register, containing information that defines the individual and group
addresses of the motion axis.

MPL Address: 0x030C

Contents. AAR information is structured as follows:

Bits 15-8 GRn. Group n selection

0 = The motion axis does not belong to group n

1 = The motion axis belongs to group n

Bits 7-0 AXISID. Axis address

value = Individual identification address for the motion axis

Remark: The AxisID is initially set at power on using the following algorithm:

1 With the value read from the EEPROM setup table containing all the setup data.

2 If the setup table is invalid, with the last axis ID value read from a valid setup table

3 If there is no axis ID set by a valid setup table, with the value read from the hardware switches/jumpers
for axis ID setting

4 If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default axis ID value
which is 255.

© ElectroCraft 2013 655 MPD User Manual

6.2.6.2. ACR - Auxiliary Command Register (status, R/W)

Purpose: ACR is a 16-bit status register. It defines extra settings like: the configuration for automatic
start and the external reference, operation options for the S-curve and the electronic camming modes.

MPL Address: 0x0912

Contents. ACR information is structured as follows:

Bits 15-14 Reserved

Bit 13 SOLCTR. Control type for stepper open loop

0 = Position control with automatic external reference analogue

1 = Speed control with automatic external reference analogue

Bit 12 CAMTYPE. Electronic camming type

0 = Relative

1 = Absolute

Bit 11 RPOSTYPE. Relative positioning type

0 = Standard

1 = Additive

Bit 10 POSCTR. Position control

0 = Disable

1 = Enable

Bit 9 SPDCTR. Speed control

0 = Disable

1 = Enable

Bit 8 TCTR. Torque control

0 = Disable

1 = Enable

Bit 7 DIGREF. Digital external reference

0 = Disable

© ElectroCraft 2013 656 MPD User Manual

1 = Enable

Bit 6 AREF. Analogue external reference

0 = Disable

1 = Enable

Bits 5 RDAREF. Read analogue external reference for torque mode when “Automatically activated
after Power On” is enabled

0 = In slow loop

1 = In fast loop

Bit 4 Reserved

Bit 3 AXISEN. Behavior at ENABLE input transitions from low to high

0 = Don’t execute AXISON

1 = Execute AXISON

Bit 2 DIGTYPE. Digital external reference type

0 = 2nd encoder

1 = Pulse & Direction

Bit 1 ASTART. Start automatically after power on

0 = Disable

1 = Enable

Bit 0 STPSC. Stop profile for S-curve motion mode

0 = An S-curve profile

1 = A trapezoidal profile

© ElectroCraft 2013 657 MPD User Manual

6.2.6.3. CBR - CAN baud rate Register (status, R/W)

CBR is a 16-bit status register, containing information to setup the communication baud rate parameters
for CAN controller.

MPL Address: 0x030D

Contents. CBR information is structured as follows:

Bit 15-8 CANBTR1. CAN bus Timing Register 1 (BTR1)

xx = CAN controller bus timing register 1

Bit 7-0 CANBTR0. CAN bus Timing Register 0 (BTR0)

xx = CAN controller bus timing register 0

6.2.6.4. CCR - Communication Control Register (command, R/W)

CCR is a 16-bit status register, containing settings for the SPI link with the EEPROM memory.

MPL Address: 0x030A

Contents. CCR information is structured as follows:

Bit 15-2 Reserved

Bit 1 Reserved

Bit 0 SPIMEM. EEPROM memory

0 = Not installed

1 = Installed

© ElectroCraft 2013 658 MPD User Manual

6.2.6.5. CER - Communication Error Register (status, RO)

CER is a 16-bit status register, containing status information about communication errors on CAN, SPI
and SCI communication channels.

MPL Address: 0x0301

Contents. CER information is structured as follows:

Bit 15-12 Reserved

Bit 11 OFWRER.EnDat encoder offset write error

0 = No SPI timeout

1 = SPI timeout

Bit 10 OFRDER. EnDat encoder offset read error

0 = No SPI timeout

1 = SPI timeout

Bit 9 ALRSER. EnDat encoder alarm reset error

0 = No SPI timeout

1 = SPI timeout

Bit 8 ALRDER. EnDat encoder alarm read error

0 = No SPI timeout

1 = SPI timeout

Bit 7 SPITTO. SPI timeout on write operation

0 = No SPI timeout

1 = SPI timeout

Bit 6 CANBER. CAN bus off error

0 = No CAN bus off error

1 = Error

Bit 5 CANTER. CAN Tx overrun error

0 = No CAN transmission overrun error

© ElectroCraft 2013 659 MPD User Manual

1 = CAN transmission overrun error

Bit 4 CANRER. CAN Rx overrun error

0 = No CAN reception overrun error

1 = CAN reception overrun error

Bit 3 Reserved

Bit 2 SCIRTO. SCI Rx timeout error

0 = No SCI reception timeout error

1 = SCI reception timeout error

Bit 1 SCITTO. SCI Tx timeout error

0 = No SCI transmission timeout error

1 = SCI transmission timeout error

Bit 0 SCIRER. SCI Rx error

0 = No SCI reception error

1 = SCI reception error

© ElectroCraft 2013 660 MPD User Manual

6.2.6.6. CSR - Communication Status Register (status, RO)

CSR is a 16-bit status register, containing status information about the communication channels of the
system.

MPL Address: 0x030B

Contents. CSR information is structured as follows:

Bit 15 ELGEAR. Electronic gearing/camming master flag

0 = No data to send

1 = Data to send

Bit 14 AXISDSTP. Axis ID setup flag

0 = Initial Axis ID set by software

1 = Initial Axis ID set by hardware

Bit 13-11 SCIBD. SCI baud rate

000 = 9600

001 = 19200

010 = 38400

011 = 56600

100 = 115200

101 = Reserved

110 = Reserved

111 = Reserved

Bit 10 Reserved

© ElectroCraft 2013 661 MPD User Manual

Bit 9-8 SPIBD. SPI baud rate

00 = 1 MHz

01 = 2 MHz

10 = 5 MHz

11 = Reserved

Bit 7-1 Reserved

Bit 0 SCITYPE. Serial communication driver type

0 = RS-232

1 = RS485

© ElectroCraft 2013 662 MPD User Manual

6.2.6.7. ICR - Interrupts Control Register (command, R/W)

ICR is a 16-bit command register, enabling/disabling the MPL interrupts. All the unmasked bits of this
register will allow the generation of a MPL interrupt at the occurrence of the associated specific situation.

MPL Address: 0x0304

Contents. ICR information is structured as follows:

Bit 15 GIM. Globally enable/disable MPL interrupts

0 = Disable

1 = Enable

Bit 14-12 Reserved

Bit 11 EVNIM. Enable/disable interrupt 11 – “Event set has occurred”

0 = Disable

1 = Enable

Bit 10 TPIM. Enable/disable interrupt 10 – “Time period has elapsed”

0 = Disable

1 = Enable

Bit 9 MOTIM. Enable/disable interrupt 9 – “Motion is complete”

0 = Disable

1 = Enable

© ElectroCraft 2013 663 MPD User Manual

Bit 8 PCAPIM. Enable/disable interrupt 8 – “Capture input transition detected”

0 = Disable

1 = Enable

Bit 7 LSWNIM. Enable/disable interrupt 7 – “LSN programmed transition detected”

0 = Disable

1 = Enable

Bit 6 LSWPIM. Enable/disable interrupt 6 – “LSP programmed transition detected”

0 = Disable

1 = Enable

Bit 5 WRPIM. Enable/disable interrupt 5 – “Position wrap around”

0 = Disable

1 = Enable

Bit 4 CMERIM. Enable/disable interrupt 4 – “Communication error”

0 = Disable

1 = Enable

Bit 3 CTRERIM. Enable/disable interrupt 3 – “Control error”

0 = Disable

1 = Enable

Bit 2 SWPRIM. Enable/disable interrupt 2 – “Software protection”

0 = Disable

1 = Enable

Bit 1 PDPIM. Enable/disable interrupt 1 –“Short-circuit”

0 = Disable

1 = Enable

Bit 0 DLSBIM. Enable/disable interrupt 0 – “Enable input has changed”

0 = Disable

1 = Enable

© ElectroCraft 2013 664 MPD User Manual

6.2.6.8. ISR - Interrupts Status Register (status, RO)

ISR is a 16-bit status register, containing the interrupt flags for MPL interrupts. Only unmasked MPL
interrupts (see Interrupt Control Register - ICR) will generate a MPL interrupt request.

MPL Address: 0x0306

Contents. ISR information is structured as follows:

Bit 15-12 Reserved

Bit 11 EVNIF. Flag for interrupt 11 – “Event set has occurred”

0 = Not triggered

1 = Triggered

Bit 10 TPIF. Flag for interrupt 10 – “Time period has elapsed”

0 = Not triggered

1 = Triggered

Bit 9 MOTIF. Flag for interrupt 9 – “Motion is complete”

0 = Not triggered

1 = Triggered

Bit 8 PCAPIF. Flag for interrupt 8 – “Capture input transition detected”

0 = Not triggered

1 = Triggered

Bit 7 LSWNIF. Flag for interrupt 7 – “LSN programmed transition detected”

0 = Not triggered

1 = Triggered

Bit 6 LSWPIF. Flag for interrupt 6 – “LSP programmed transition detected”

0 = Not triggered

1 = Triggered

Bit 5 WRPIF. Flag for interrupt 5 – “Position wraparound”

0 = Not triggered

© ElectroCraft 2013 665 MPD User Manual

1 = Triggered

Bit 4 CMERIF. Flag for interrupt 4 – “Communication error”

0 = Not triggered

1 = Triggered

Bit 3 CTRERIF. Flag for interrupt 3 – “Control error”

0 = Not triggered

1 = Triggered

Bit 2 SWPRIF. Flag for interrupt 2 – “Software protections”

0 = Not triggered

1 = Triggered

Bit 1 PDPIF. Flag for interrupt 1 – “Short-circuit”

0 = Not triggered

1 = Triggered

Bit 0 DSLBIF. Flag for interrupt 0 – “Enable input has changed”

0 = Not triggered

1 = Triggered

© ElectroCraft 2013 666 MPD User Manual

6.2.6.9. MCR - Motion Command Register (status, RO)

MCR is a 16-bit status register containing information about the motion modes, reference mode, active
control loops, positioning type - absolute or relative, etc.

MPL Address: 0x0309

Contents. MCR information is structured as follows:

Bit 15 MMODE. Motion mode

0 = Same motion mode

1 = New motion mode

Bit 14 MODECHG. When motion mode is changed

0 = Update the reference

1 = Keep the reference

Bit 13 POSTYPE. Positioning type

0 = Relative

1 = Absolute

Bit 12 REGMODE. Motion superposition

0 = Disable the superposition of the electronic gearing mode with a second motion mode

1 = Enable the superposition of the electronic gearing mode with a second motion mode

Bit 11 ELGEAR. Electronic gearing master

0 = Disable the axis as master

1 = Enable the axis as master

Bit 10 POSLP. Position loop status

0 = Disabled

1 = Enabled

© ElectroCraft 2013 667 MPD User Manual

6.2.7. Bit 9 SPDLP. Speed loop status

0 = Disabled

1 = Enabled

Bit 8 CRTLP. Current loop status

0 = Disabled

1 = Enabled

Bit 7-6 EXTREF. External reference type

00 = On-line reference

01 = Analogue reference

10 = Digital reference

11 = Reserved

Bit 5 REFLOC. Analogue external reference for torque/voltage mode update

0 = Update in slow control loop

1 = Update in fast control loop

Bit 4-0 REFTYPE. Reference type

00000 = External reference

00001 = Trapezoidal reference

00010 = Contouring position/speed

00011 = Contouring torque/voltage

00100 = Pulse & direction

00101 = Electronic gearing slave

00110 = Electronic camming slave

00111 = S-curve reference

01000 = Test mode

01001 = PVT

01010 = PT

10000 = Stop 0/1/2

10001 = Stop using trapezoidal profile

10100 = Stop using S-curve profile

10101 = Quickstop

© ElectroCraft 2013 668 MPD User Manual

6.2.7.1. MER - Motion Error Register (status, RO)

Purpose: MER is a 16-bit status register. It groups together all the errors conditions. Most of the error
conditions trigger the FAULT status.

MPL Address: 0x08FC

Contents. MER information is structured as follows:

Bit 15 ENST. Enable status of drive/motor

0 = Enabled

1 = Disabled

Bit 14 CMDER. Command error

0 = No command error

1 = Command error. The bit is set in 2 cases:

Bit 13 UVER. Under voltage error

0 = No under voltage error

1 = Under voltage error

Bit 12 OVER. Over voltage error

0 = No over voltage error

1 = Over voltage error

Bit 11 OTERD. Drive over temperature error

0 = No drive over temperature error

1 = Drive over temperature error

Bit 10 OTERM. Motor over temperature error

0 = No motor over temperature error

1 = Motor temperature error

© ElectroCraft 2013 669 MPD User Manual

Bit 9 I2TER. I2T protection error

0 = No drive or motor I2T error

1 = Drive or motor I2T error

Bit 8 OCER. Over-current error

0 = No over-current error

1 = Over-current error

Bit 7 LSNST. Negative limit switch status

0 = LSN in not active

1 = LSN is active

Bit 6 LSPST. Positive limit switch status

0 = LSP is not active

1 = LSP is active

Bit 5 WRPSER. Hall sensor missing /Resolver error /BiSS error /Position wrap around error

0 = No error

1 = Error

Bit 4 SCIER. Communication error

0 = No serial or internal communication error

1 = Serial or internal communication error

Bit 3 CTRER. Control error

0 = No control error

1 = Control error

Bit 2 STPTBL. Setup table status

0 = The drive/motor has a valid setup table

1 = The drive/motor has an invalid setup table

Bit 1 SCER. Short-circuit protection status

0 = No short-circuit error

1 = Short-circuit error

Bit 0 CANBER. CAN bus status

0 = No CAN bus error

1 = CAN bus error

© ElectroCraft 2013 670 MPD User Manual

6.2.7.2. MSR - Motion Status Register (status, RO)

MSR is a 16-bit status register, containing information about motion system status and some specific
events like: control error condition, position wrap-around, limit switches and captures triggered by
programmed transitions, etc.

MPL Address: 0x0308

Contents. MSR information is structured as follows:

Bit 15 UPDATE. Update the motion mode

0 = No update

1 = Update

Bit 14 EVNRS. Event status

0 = Reset after update

1 = Set of update

Bit 13 AXISST. Axis status

0 = Axis Off

1 = Axis On

Bit 12 Reserved

Bit 11 EVNS. Events

0 = No event set, or programmed event not occurred yet

1 = Last event reached

Bit 10 CNTSGS. Contour segment

0 = Don’t update

1 = Update

© ElectroCraft 2013 671 MPD User Manual

Bit 9 MOTS. Motion status

0 = In motion

1 = Motion complete

Bit 8 PCAPS. Position capture

0 = Not triggered

1 = Triggered

Bit 7 LSWNS. Negative limit switch

0 = Not triggered

1 = Triggered

Bit 6 LSWPS. Positive limit switch

0 = Not triggered

1 = Triggered

Bit 5 WRPS. Position wrap around

0 = Not triggered

1 = Triggered

Bit 4 Reserved

Bit 3 CTRERS. Control error status

0 = Not triggered

1 = Triggered

Bit 2 SWPRS. Software protections status

0 = Not triggered

1 = Triggered

Bit 1 SCUPD. S-Curve update status

0 = S-curve updated successfully

1 = S-curve update denied (UPD instruction received when motion was not

complete)

Bit 0 ENDINIT. Drive/motor initialization status

0 = Not performed

1 = Performed

© ElectroCraft 2013 672 MPD User Manual

6.2.7.3. OSR - Operating Settings Register (configuration, R/W)

OSR is a 16-bit configuration register, defines some specific operating settings regarding motor control
and data acquisition

MPL Address: 0x0302

Contents. OSR information is structured as follows:

Bit 15 ELGMD. Electronic gearing master mode

0 = Send actual position to slave axes

1 = Send target position to slave axes

Bit 14-13 Reserved

Bit 12 PSPLC. Position sensor mounting place

0 = Position sensor on motor

1 = Position sensor on load

Bit 11 LOGGER. PMSM start logging

0 = No data logging during PMSM motor start

1 = Data logging during PMSM motor start

Bit 10 STEPCTRL. Stepper motor control type

0 = Open loop

1 = Closed loop

Bit 9 BKCMD. Brake command

0 = Disabled

1 = Enabled

Bit 8 UDQSAT. Ud,q command saturation method

0 = Use independently saturated commands on d and q axes

1 = Compute Uq from Ud. Uq = f(Ud)

© ElectroCraft 2013 673 MPD User Manual

Bit 7-6 PWM. PWM command method

00 = Standard symmetric PWM

01 = Dead-time and Vdc compensation

10 = Dead-time, Vdc compensation and third harmonic injection

11 = Reserved

Bit 5 Reserved

Bit 4-2 PMSMST. PMSM motor start method

000 = Reserved

001 = a/b, voltage mode, incremental encoder

010 = Start using digital Hall sensors

011 = Reserved

100 = Reserved

101 = Motionless start (encoder only) *

110 = Reserved

111 = Direct start using absolute encoder

Bit 1-0 CRTOFF. Current offset detection

00 = No current offset detection

01 = Detection without PWM activated

10 = Detection with PWM activated

11 = Reserved

*On select firmware versions only

© ElectroCraft 2013 674 MPD User Manual

6.2.7.4. PCR - Motion Status Register (command/status, R/W)

PCR is a 16-bit command and status register, containing both masks and status information for MPL
protections.

MPL Address: 0x0303

Contents. PCR information is structured as follows:

Bit 15 I2TDPRS. Status of drive i2t protection

0 = Not triggered

1 = Triggered

Bit 14 Reserved

Bit 13 UVPRS. Status of under voltage protection

0 = Not triggered

1 = Triggered

Bit 12 OVPRS. Status of over voltage protection

0 = Not triggered

1 = Triggered

Bit 11 OT2PRS. Status of drive over temperature protection

0 = Not triggered

1 = Triggered

Bit 10 OT1PRS. Status of motor over temperature protection

0 = Not triggered

1 = Triggered

Bit 9 I2TMPRS. Status of motor i2t protection

0 = Not triggered

1 = Triggered

Bit 8 IMAXP. Status of over current protection

0 = Not triggered

© ElectroCraft 2013 675 MPD User Manual

1 = Triggered

Bit 7 I2TDPRM. Mask for drive I2t protection

0 = Disable

1 = Enable

Bit 6 Reserved

Bit 5 UVPRM. Mask for under voltage protection

0 = Disable

1 = Enable

Bit 4 OVPRM. Mask for over voltage protection

0 = Disable

1 = Enable

Bit 3 OT2PRM. Mask for drive over temperature protection

0 = Disable

1 = Enable

Bit 2 OT1PRM. Mask for motor over temperature protection

0 = Disable

1 = Enable

Bit 1 I2TPRM. Mask for motor I2t protection

0 = Disable

1 = Enable

Bit 0 IMXPRM. Mask for maximum current protection

0 = Disable

1 = Enable

© ElectroCraft 2013 676 MPD User Manual

6.2.7.5. SCR - System Configuration Register (configuration, R/W)

SCR is a 16-bit configuration register, defines the basic application configuration regarding the motor type
and the feedback sensors used

MPL Address: 0x0300

Contents. SCR information is structured as follows:

Bit 15 Reserved

Bit 14-12 MOTOR. Motor type

000 = Brushless DC

001 = Brushed DC

010 = Brushless AC

011 = Reserved

100 = Stepper

101 = Tri-phases stepper

110 = Reserved

111 = Reserved

Bit 11-9 Reserved

Bit 8 TSNS2. Drive temperature sensor

0 = Disabled

1 = Enabled

Bit 7 TSNS1. Motor temperature sensor

0 = Disabled

1 = Enabled

Bit 6 Reserved

© ElectroCraft 2013 677 MPD User Manual

Bit 5-3 SSNS. Speed sensor

000 = Position difference

001 = Tachogenerator

010 = Pulse length from Hall sensor

011 = Reserved

100 = Reserved

101 = Reserved

110 = Reserved

111 = None

Bit 2-0 PSNS. Position sensor

000 = Quadrature encoder

001 = Resolver

010 = Sin-cos with/without EnDat

011 = SSI

100 = Linear Hall

101 = BiSS encoder

110 = Reserved

111 = None

© ElectroCraft 2013 678 MPD User Manual

6.2.7.6. SRH - Status Register High part (status, RO)

Purpose: SRH is the high part of a the status register grouping together all the key status information
concerning the drive/motor

MPL Address: 0x090F

Contents. SRH information is structured as follows:

Bit 15 FAULT. Fault status

0 = No fault

1 = Drive/motor in fault status

Bit 14 INCAM. Reference position in absolute electronic camming mode

0 = Not reached

1 = Reached

Bit 13 Reserved

Bit 12 INGEAR Gear ratio in electronic gearing mode

0 = Not reached

1 = Reached

Bit 11 I2TWRGD. Drive I2T protection warning

0 = Drive I2T warning limit not reached

1 = Drive I2T warning limit reached

Bit 10 I2TWRGM. Motor I2T protection warning

0 = Motor I2T warning limit not reached

1 = Motor I2T warning limit reached

Bit 9 TRGR. Target command

0 = Not reached

1 = Reached

Bit 8 PCAPS. Capture event/interrupt

0 = Not triggered

1 = Triggered

© ElectroCraft 2013 679 MPD User Manual

Bit 7 LSWNS. Limit switch negative event/interrupt

0 = Not triggered

1 = Triggered

Bit 6 LSWPS. Limit switch positive event/interrupt

0 = Not triggered

1 = Triggered

Bit 5 AUTORUN. AUTORUN mode status

0 = Disabled

1 = Enabled

Bit 4 PTRG4. Position trigger 4

0 = Not reached

1 = Reached

Bit 3 PTRG3. Position trigger 3

0 = Not reached

1 = Reached

Bit 2 PTRG2. Position Trigger 2

0 = Not reached

1 = Reached

Bit 1 PTRG1. Position Trigger 1

0 = Not triggered

1 = Triggered

Bit 0 ENDINIT. Drive/motor initialization status

0 = Not performed

1 = Performed

See also:

Status register low part – SRL

© ElectroCraft 2013 680 MPD User Manual

6.2.7.7. SRL - Status Register Low part (status, RO)

Purpose: SRL is the low part of a status register grouping together all the key status information
concerning the drive/motor

MPL Address: 0x090E

Contents. SRL information is structured as follows:

Bit 15 AXISST. Axis status

0 = Axis Off

1 = Axis On

Bit 14 EVNS. Events

0 = No event set, or programmed event not occurred yet

1 = Last programmed event reached

Bits 13-11 Reserved.

Bit 10 MOTS. Motion status

0 = In motion

1 = Motion complete

Bit 9 Reserved.

Bit 8 CALLSST. Cancelable call status

0 = No function in execution following a cancelable call

1 = A function in execution following a cancelable call

Bit 7 CALLWRG. Cancelable call warning

0 = No warning

1 = Warning – a cancelable call is issued while another cancelable function is in execution

Bits 6-0 Reserved

See also:

Status register high part – SRH

© ElectroCraft 2013 681 MPD User Manual

6.2.7.8. SSR - Slave Status Register (status, RO)

SSR is a 32-bit status register containing information about slave axes initialization status, setup table
status, firmware compatibility and slave presence in the CAN network.

MPL Address: 0x07F2

Contents. SSR information is structured as follows:

Bit 31 HIERR. H slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 30 HIFW. H slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 29 HISTP. H slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 28 HDET. H slave detection

0 = Detected successfully

1 = Not detected

Bit 27 GIERR. G slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 26 GIFW. G slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

© ElectroCraft 2013 682 MPD User Manual

Bit 25 GISTP. G slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 24 GDET. G slave detection

0 = Detected successfully

1 = Not detected

Bit 23 FIERR. F slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 22 FIFW. F slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 21 FISTP. F slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 20 FDET. F slave detection

0 = Detected successfully

1 = Not detected

Bit 19 EIERR. E slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 18 EIFW. E slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 17 EISTP. E slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 16 EDET. E slave detection

0 = Detected successfully

1 = Not detected

Bit 15 DIERR. D slave initialization status

0 = Initialization successful

1 = Initialization error

© ElectroCraft 2013 683 MPD User Manual

Bit 14 DIFW. D slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 13 DISTP. D slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 12 DDET. D slave detection

0 = Detected successfully

1 = Not detected

Bit 11 CIERR. C slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 10 CIFW. C slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 9 CISTP. C slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 8 CDET. C slave detection

0 = Detected successfully

1 = Not detected

Bit 7 BIERR. B slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 6 BIFW. B slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 5 BISTP. B slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 4 BDET. B slave detection

0 = Detected successfully

1 = Not detected

© ElectroCraft 2013 684 MPD User Manual

Bit 3 AIERR. A slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 2 AIFW. A slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 1 AISTP. A slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 0 ADET. A slave detection

0 = Detected successfully

1 = Not detected

© ElectroCraft 2013 685 MPD User Manual

6.2.7.9. UPGRADE - Upgrade Register (configuration, R/W)

UPGRADE is a 16-bit status register, defining new options and extended features that are activated when
their corresponding bits are set.

MPL Address: 0x0857

Contents. UPGRADE information is structured as follows:

Bit 15 STPTBL. Setup table

0 = Valid setup table is not required

1 = Valid setup table is required

Bit 14 Reserved

Bit 13 TXBUFF. CAN-bus transmit buffer length

0 = The length of CAN-bus transmit buffer is 1 messages

1 = The length of CAN-bus transmit buffer is 5 messages

Bit 12 TINTQSTP. MPL time interrupt/quickstop

0 = Disable

1 = Enable MPL time interrupt and quickstop mode when a limit switch is reached

Bit 11 MCM. Motion complete mode

0 = Motion complete set when the position reference arrives at the commanded position

1 = Motion complete set when the position feedback arrives at the commanded position
and remains in a settle band for a preset stabilize time interval

Bit 10 I2TPRT. I2T protection

0 = One I2T protection common for drive and motor

1 = Two I2T protections, one for drive and the other for the motor

Bit 9 IPOS. Initial positioning mode

0 = Standard – wait time per phase up to 1s

1 = Extended – wait time per phase up to 635s

© ElectroCraft 2013 686 MPD User Manual

Bit 8 IORW. I/O lines read/write

0 = Simultaneous read /write of 4 general purpose inputs/outputs

1 = Simultaneous read 4 general-purpose inputs and 3 dedicated inputs: Enable, LSP and LSN.
Simultaneous set 4 general-purpose outputs and 2 dedicated outputs: Ready and Error.

Bit 7 ATIME. Absolute time start

0 = After instruction ENDINIT

1 = After power on

Bit 6 FSTSLW. Position/speed control mode

0 = Position/speed control in slow loop

1 = Position/speed control in fast loop

Bit 5 STBCRT. Standby current for step motors

0 = Disable

1 = Enable

Bit 4 SPDCTR. Speed control error protection

0 = Common with position control error protection

1 = Separate control error protection for position and speed

Bit 3 REG. Registration mode

0 = Disabled

1 = Enabled

Bit 2 LMTSPDACC. Maximal speed/acceleration in motion modes: external, electronic gearing and
electronic camming

0 = Unlimited

1 = Limited

Bit 1 STPMD. Stop mode for steppers

0 = Disabled

1 = Enabled

Bit 0 AREFLMT. Analogue reference

0 = Symmetrical, only positive or only negative

1 = Separately programmable upper and lower limits

© ElectroCraft 2013 687 MPD User Manual

6.3. Internal Units and Scaling Factors

ElectroCraft drives/motors work with parameters and variables represented in internal units (IU). The
parameters and variables may represent various signals: position, speed, current, voltage, etc. Each type
of signal has its own internal representation in IU and a specific scaling factor. In order to easily identify
each type of IU, these have been named after the associated signals. For example the position units
are the internal units for position, the speed units are the internal units for speed, etc.

The scaling factor of each internal unit shows the correspondence with the international standard units
(SI). The scaling factors are dependent on the product, motor and sensor type. Put in other words, the
scaling factors depend on the setup configuration.

In order to find the internal units and the scaling factors for a specific case, select the application in the
project window and then execute menu command Help | Application Programming | Internal Units
and Scaling Factors.

Important: The Help | Application Programming | Internal Units and Scaling Factors command
provides customized information function of the application setup. If you change the drive, the motor
technology or the feedback device, check again the scaling factors with this command. It may show you
other relations!

6.4. PRO EEPROM Programmer

6.4.1. PRO EEPROM Programmer

All ElectroCraft drives/motors include a non-volatile EEPROM memory. Its role is to:

• Keep the setup data in a dedicated area named setup table together with a user programmable
application ID, which helps you quickly identify the setup data uploaded from a drive/motor.

• Store the MPL motion programs and their associated data like the cam tables needed for electronic
camming applications.

• Keep the product ID of each drive/motor and the required firmware ID for the programmed
application.

Remark: The required firmware ID indicates that the actual drive/motor firmware ID must have the same
number and a revision letter equal or higher. For example if the required firmware ID is: F000H, the actual
drive/motor firmware ID must be F000H or F000I, or F000J, etc.

The Drive/Motor PRO EEPROM Programmer is a tool specifically designed for production, through which
you can:

• Program fast and easy the EEPROM memory of any ElectroCraft drive/motor with all the data needed
to run a specific application. These data are grouped into a unique file named software file (with
extension .sw)

• Check EEPROM data integrity by comparing the information read from the drive/motor memory with
that read from a .sw software file

• Write protect a part or the entire EEPROM memory.

• Get information about the drive/motor configuration ID including the product ID, the firmware ID and
the application ID

© ElectroCraft 2013 688 MPD User Manual

The Drive/Motor PRO EEPROM Programmer is included in both the PROconfig and MotionPRO
Developer installation packages and is automatically installed with them. However, it may also be
installed separately. To launch the Drive/Motor EEPROM from Windows Start menu execute: “Start |
Programs | PROconfig | Drive/Motor PRO EEPROM Programmer” or “Start | Programs | MotionPRO
Developer| Drive/Motor PRO EEPROM Programmer” depending on which installation package you have
used. You can also start the Drive/Motor PRO EEPROM Programmer from the main folder of the
PROconfig / MotionPRO Developer by executing “PRO EEPROMprog.exe”.

The Drive/Motor PRO EEPROM Programmer has 3 tabs: Application, Configuration ID and
Communication Settings

In the Application tab you select a .sw software file. Use the Download button to program it into the
drive/motor EEPROM memory. Use the Verify button to check if the information stored in the drive/motor
EEPROM is identical with that from the selected .sw file. Press the Checksum button to compute the
sum modulo 65536 of all the data from a .sw file. The checksum result may be used by a master during
the application initialization to validate that data from a drive/motor EEPROM memory is correct and
complete. For example, the host can ask a drive/motor to return the checksum for each block of
continuous data from the EEPROM, according with the .sw file. By adding the results returned by the
drive/motor, the host obtains a global checksum which must match with the value got when the
Checksum button is pressed. Use the Read… button to save the contents of the whole EEPROM
memory in a .sw file.

The Drive/Motor PRO EEPROM Programmer signals with an OK inside a green disk that the:

• Download operation is correctly executed

• Verify operation, gives a match between the .sw file and the drive/motor EEPROM contents

• Read operation is successfully ended and the .sw file is created

Otherwise, an ERROR inside a red disk is displayed together with a message explaining the error type.

© ElectroCraft 2013 689 MPD User Manual

In the Configuration ID tab, by pressing the Get Info button, you get the drive/motor configuration ID
including the product ID, the firmware ID, the EEPROM size and the application ID.

The product ID uniquely identifies the drive/motor execution. This information is written by ElectroCraft in
the last EEPROM memory locations in especially reserved locations. In these locations ElectroCraft also
puts the product EEPROM size in 16-bit Kwords and the required firmware ID. The main goal of this
information is to protect against accidental wrong programming of the EEPROM memory or in the case of
very big MPL programs against bypassing the EEPROM capacity. Both PROconfig and MotionPRO
Developer perform the following verifications every time a setup data or a motion application has to be
downloaded.

1) The product ID of the application/setup data to download matches with the product ID stored in
the drive/motor EEPROM, or is set as being compatible

2) The required firmware of the application/setup data to download has the same number as the
drive/motor actual firmware and either the same or a lower revision

The download is performed only if both conditions are true. The application ID is a space reserved for a
text of up to 40 characters which you can program. Its main goal is to help you quickly identify the setup
data uploaded from a drive/motor. In order to program an application ID, edit your text in the Application
ID field and press the Download button.

The configuration ID tab may also be used to reprogram the product ID, the required firmware ID and the
EEPROM size, if by mistake, the area reserved for this information in the EEPROM memory is erased. In
this case, select the product name from the list, add your application ID (if it is the case) and press the
Download button.

In the Communication Settings tab, you can set the communication type and parameters as well as the
EEPROM write protection degree. When you launch the PRO EEPROM Programmer, it tries to
communicate with your drive/motor using your last communication settings. If the communication attempt
fails, the PRO EEPROM Programmer opens automatically the Communication Settings tab, where you
can setup the communication parameters(HELP_COMMUNICATION_SETUP@PROconfig.hlp). Each
time when you’ll try to switch to the other tabs, the communication is checked and the other tabs are
opened ONLY if the communication is established.

© ElectroCraft 2013 690 MPD User Manual

If your application does not require storing data in the drive/motor EEPROM at runtime and you don’t
intend to change the setup parameters from your host and then to save the changes in the drive/motor
EEPROM, you can write protect the entire EEPROM after you download the .sw file. This is an extra
protection against accidental wrong commands that may modify EEPROM locations. If your application
requires to store data at runtime but you don’t and you don’t intend to change the setup parameters and
maybe cam tables (if present) you can write protect only the last quarter or last half of the EEPROM and
allow the write operation for the rest.

See also:

Software Files Creation and Format

Communication Setup

© ElectroCraft 2013 691 MPD User Manual

6.4.2. PRO EEPROM Programmer File Format

The .sw software files can be generated either from PROconfig or from MotionPRO Developer.

In PROconfig you create a .sw file with the command Setup | PRO EEPROM Programmer File…

The software file generated, includes the setup data and the drive/motor configuration ID with the user
programmable application ID. Typically, this type of .sw file is used in applications where the motion
programming is done from the host using for example one of the MPL_LIB motion libraries offered by
ElectroCraft for: PC applications (written in C/C++, Visual Basic, Delphi Pascal, Labview) or for PLCs
according with the PLCOpen standard.

© ElectroC

In Motion
Programm
with com
drive/moto
PROconfi

Software

A softwar
data sepa
values to
data – to
hexadecim
shown, th

See also:

Drive/Mot

Craft 2013

PRO Develop
mer File | Mo

mplete inform
or configurati
g i.e. having

 File Format

e file (with ex
arated by an e
place in asce

o write at sta
mal digits). E
e value must

tor PRO EEP

per you creat
otion and Se
ation includi
on ID. The o
only the setu

xtension .sw)
empty row. E
ending order a
art address +
Each raw con
 be right justif

ROM Program

69

te a .sw file w
etup or Setup
ng setup da

option Setup
p data and th

is a text file t
Each block of
at consecutiv
+ 1, etc. All
ntains a singl
fied. For exam

mmer

92

with one of th
p Only. The o
ata, MPL pro
Only produce
e configuratio

that can be re
data starts w

ve addresses:
the data are
e data value
mple 92 repre

he commands
option Motio
ograms, cam
es a .sw file
on ID.

ead with any
with the block
: first data – t
e hexadecim
e. When less
esent 0x0092

MPD U

s: Application
on and Setup
m tables (if

identical with

text editor. It
start address

to write at sta
al 16- bit va
then 4 hexa

2.

User Manual

n | PRO EEP
p creates a .s

present) an
h that produc

contains bloc
s, followed by
rt address, se

alues (maxim
adecimal digit

PROM
sw file
d the

ced by

cks of
y data
econd

mum 4
ts are

© ElectroCraft 2013 693 MPD User Manual

Appendix A : MPL Instructions List

[A/G] { MPL Instr} Send MPL instruction to [A/G]

[A/G] V16D = V16S [A/G] V16D = local V16S

[A/G] V16D, dm = V16S [A/G] V16D = local V16S (fa)

[A/G] (V16D), TM = V16S [A/G] (V16D), TM = local V16S

[A/G] (V16D+), TM = V16S [A/G] (V16D), TM = local V16S, then V16D += 1

[A/G] V32D = V32S [A/G] V32D = local V32S

[A/G] V32D, dm = V32S [A/G] V32D = local V32S (fa)

[A/G] (V16D), TM = V32S [A/G] (V16D), TM = local V32S

[A/G] (V16D+), TM = V32S [A/G] (V16D), TM = local V32S, then V16D += 2

(?)GiveMeData Ask one axis to return a 16/32 bit data from memory

(??)GiveMeData2 Ask a group of axes to return each a 16/32 bit data from memory

!ALPO Set event when absolute load position is over a value

!ALPU Set event when absolute load position is under a value

!AMPO Set event when absolute motor position over a value

!AMPU Set event when absolute motor position under a value

!CAP Set event when a capture input goes low or high

!IN#n Set event when digital input #n goes low or high

!LSN Set event when the negative limit switch (LSN) goes low or high

!LSP Set event when positive limit switch (LSP) goes low or high

!LSO Set event when load speed is over a value

!LSU Set event when load speed is under a value

!MC Set event when the actual motion is completed

!MSO Set event when motor speed is over a value

!MSU Set event when motor speed is under a value

!PRO Set event when position reference is over a value

!PRU Set event when position reference is under a value

!RPO Set event when relative load position is over a value

© ElectroCraft 2013 694 MPD User Manual

!RPU Set event when relative load position is under a value

!RT Set event after a wait time

!SRO Set event if speed reference is over a value

!SRU Set event if speed reference is under a value

!TRO Set event if torque reference is over a value

!TRU Set event if torque reference is under a value

!VO Set event if a long/fixed variable is over a value

!VU Set event if a long/fixed variable is under a value

ABORT Abort the execution of a function called with CALLS

ADDGRID (value16_1, value16_2,…) Add groups to the Group ID

AXISID Set Axis ID

AXISOFF AXIS is OFF (deactivate control)

AXISON AXIS is ON (activate control)

BEGIN BEGIN of a MPL program

CALL Call a MPL function

CALLS Cancelable CALL of a MPL function

CANBR val16 Set CAN bus baud rate

CHECKSUM, TM Start, Stop, V16D V16D=Checksum between Start and Stop addresses from TM

CIRCLE Define circular segment for vector mode

CPA Command Position is Absolute

CPR Command Position is Relative

DINT Disable globally all MPL interrupts

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

DISLSN Disable negative limit switch (LSN) input to detect transitions

DISLSP Disable positive limit switch (LSP) input to detect transitions

EINT Enable globally all MPL interrupts

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high transition

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high transition

© ElectroCraft 2013 695 MPD User Manual

END END of a MPL program

ENDINIT END of Initialization

ENEEPROM Enables EEPROM usage after it was disabled by the initialization of SSI or
ENDat encoders

ENLSN0 Enable negative limit switch (LSN) input to detect a high to low transition

ENLSN1 Enable negative limit switch (LSN) input to detect a low to high transition

ENLSP0 Enable positive limit switch (LSP) input to detect a low to high transition

ENLSP1 Enable positive limit switch (LSP) input to detect a high to low transition

EXTREF Set external reference type

FAULTR Reset FAULT status. Return to normal operation

Get checksum Ask one axis to return the checksum between 2 addresses from its MPL
memory

GETERROR Get last error reported by slaves

GetMPLData Ask one axis to return a MPL data

GetVersion Ask one axis the firmware version

GOTO Jump

GROUPID (value16_1, value16_2,…) Set GROUP ID

V16D = IN#n Read input #n. V16D = input #n status

INITCAM addrS, addrD Copy CAM table from EEPROM (addrS address) to RAM (addrD address)

V16D = INPUT1, ANDm V16D = logical AND between inputs IN#25 to IN#32 status and ANDm mask

V16D = INPUT2, ANDm V16D = logical AND between inputs IN#33 to IN#39 status and ANDm mask

V16D = INPORT, ANDm V16D = status of inputs Enable, LSP, LSN plus IN#36 to IN#39

LOCKEEPROM Locks or unlocks the EEPROM write protection

LPLANE Define coordinate system for linear interpolation mode

MODE CS Set MODE Cam Slave

MODE GS Set MODE Gear Slave

MODE LI Set MODE Linear Interpolation

MODE PC Set MODE Position Contouring

MODE PE Set MODE Position External

MODE PP Set MODE Position Profile

MODE PSC Set MODE Position S-Curve

MODE PT Set MODE PT

MODE PVT Set MODE PVT

MODE SC Set MODE Speed Contouring

© ElectroCraft 2013 696 MPD User Manual

MODE SE Set MODE Speed External

MODE SP Set MODE Speed Profile

MODE TC Set MODE Torque Contouring

MODE TEF Set MODE Torque External Fast

MODE TES Set MODE Torque External Slow

MODE TT Set MODE Torque Test

MODE VC Set MODE Voltage Contouring

MODE VEF Set MODE Voltage External Fast

MODE VES Set MODE Voltage External Slow

MODE VM Set MODE Vector Mode

MODE VT Set MODE Voltage Test

NOP No Operation

OUT(n) =value16 Set the output line as specified by value16

OUT(n1, n2, n3, …) =value16 Set the output lines n1 n2, n3 as specified by value16

OUTPORT Set Enable, LSP, LSN and general purpose outputs OUT#28-31

PING Ask a group of axes to return their axis ID

PONG Answer to a PING request

PROD <<= N Left shift 48-bit product register by N

PROD >>= N Right shift 48-bit product register by N

PTP Define a PT point

PVTP Define a PVT point

REG_OFF Disable superposed mode

REG_ON Enable superposed mode

REMGRID (value16_1, value16_2,…) Remove groups from the Group ID

RESET RESET drive / motor

RET Return from a MPL function

RETI Return from a MPL Interrupt Service Routine

RGM Reset electronic gearing/camming master mode

ROUT#n Set low the output line #n

SAP Set Actual Position

SAVE Save setup data in the EEPROM memory

SAVEERROR Save slave error in EEPROM

SCIBR V16 Set RS-232/Rs485 serial communication interface (SCI) baud rate

© ElectroCraft 2013 697 MPD User Manual

SEG Define a contouring segment

SEND Send to host the contents of a MPL variable

SetAsInput(n) Set the I/O line #n as an input

SetAsOutput(n) Set the I/O line #n as an output

SETIO#n Set IO line #n as input or as output

SETPT Setup PT mode operation

SETPVT Setup PVT mod operation

SETSYNC Enable/disable synchronization between axes

SGM Set electronic gearing/camming master mode

SOUT#n Set high the output line #n

SRB V16, ANDm, ORm Set / Reset Bits from V16

SRBL V16, ANDm, ORm Set / Reset Bits from V16 (fa)

STA Set Target position = Actual position

STARTLOG V16 Start the data acquisition

STOP STOP motion

STOP! STOP motion when the programmed event occurs

STOPLOG Stop the data acquisition

Take checksum Answer to Get checksum request

TakeData Answer to GiveMeData request

TakeData Answer to Get MPL Data request

TakeData2 Answer to GiveMeData2 request

TakeVersion Answer to Get version request

TUM0 Target update mode 0

TUM1 Target update mode 1

UPD Update motion mode and parameters. Start motion

UPD! Update motion mode and parameters when the programmed event occurs

VPLANE Define coordinate system for Vector Mode

V16D = [A] V16S Local V16D = [A] V16S

V16D = [A] V16S, dm Local V16D = [A] V16S, dm (fa)

V16D = [A] (V16S), TM Local V16D = [A] (V16S), dm

V16D = [A] (V16S+), TM Local V16D = [A] (V16S), dm, then V16S += 1

V32D = [A] V32S Local V32D = [A] V32S

V32D = [A] V32S, dm Local V32D = [A] V32S, dm (fa)

© ElectroCraft 2013 698 MPD User Manual

V32D = [A] (V16S), TM Local V32D = [A] (V16S), TM

V32D = [A] (V16S+), TM Local V32D = [A] (V16S), TM, then V16S += 2

V16 = label V16 = &label

V16D = V16S V16D = V16S

V16 = val16 V16 = val16

V16D = V32S(H) V16D = V32S(H)

V16D = V32S(L) V16D = V32S(L)

V16D, dm = V16S V16D = V16S (fa)

V16D, dm = val16 V16D = val16 (fa)

V16D = (V16S), TM V16D = (V16S) from TM memory

V16D = (V16S+), TM V16D = (V16S) from TM memory, then V16S += 1

(V16D), TM = V16S (V16D) from TM memory = V16S

(V16D), TM = val16 (V16D) from TM memory = val16

(V16D+), TM = V16S (V16D) from TM memory = V16S, then V16D += 1

(V16D+), TM = val16 (V16D) from TM memory = val16, then V16D += 1

V32(H) = val16 V32(H) = val16

V32(L) = val16 V32(H) = val16

V32D(H) = V16S V32D(H) = V16

V32D(L) = V16S V32D(L) = V16

V16D = -V16S V16D = -V16S

V32D = V32S V32D = V32S

V32 = val32 V32 = val32

V32D =V16S << N V32D = V16S left-shifted by N

V32D, dm = V32S V32D from dm = V32S (fa)

V32D, dm = val32 V32 from dm = val32 (fa)

V32D = (V16S), TM V32D = (V16S) from TM memory

V32D = (V16S+), TM V32D = (V16S) from TM memory, then V16S += 2

(V16D), TM = V32S (V16D) from TM memory = V32S

(V16D), TM = val32 (V16D) from TM memory = val32

(V16D+), TM = V32S (V16D) from TM memory = V32S, then V16D += 2

(V16D+), TM = val32 (V16D) from TM memory = val32, then V16D += 2

V32D = -V32S V32D = -V32S

V16 += val16 V16 = V16 + val16

© ElectroCraft 2013 699 MPD User Manual

V16D += V16S V16D = V16D + V16S

V32 += val32 V32 = V32 + val32

V32D += V32S V32D = V32D + V32S

V16 -= val16 V16 = V16 - val16

V16D -= V16S V16D = V16D - V16S

V32 -= val32 V32 = V32 - val32

V32D -= V32S V32D = V32D - V32S

V16 * val16 << N 48-bit product register = (V16 * val16) >> N

V16 * val16 >> N 48-bit product register = (V16 * val16) >> N

V16A * V16B << N 48-bit product register = (V16A * V16B) << N

V16A * V16B >> N 48-bit product register = (V16A * V16B) >> N

V32 * V16 << N 48-bit product register = (V32 * V16) << N

V32 * V16 >> N 48-bit product register = (V32 * V16) >> N

V32 * val16 << N 48-bit product register = (V32 * val16) << N

V32 * val16 >> N 48-bit product register = (V32 * val16) >> N

V32=/V16 Divide V32 to V16

V16 <<= N Left shift V16 by N

V32 <<= N Left shift V32 by N

V16 >>= N Right shift V16 by N

V32 >>= N Right shift V32 by N

VSEG Define linear segment for vector mode

WAIT! Wait until the programmed event occurs

WALPO Set and wait event when slave’s absolute load position is over a value

WALPU Set and wait event when slave’s absolute load position is under a value

WAMPO Set and wait event when slave’s absolute motor position over a value

WAMPU Set and wait event when absolute motor position under a value

WCAP Set and wait event when slave’s 1st capture/encoder index input goes low or
high

W2CAP Set and wait event when slave’s 2nd capture/encoder index input goes low or
high

WIN#n Set and wait event when slave’s digital input #n goes low or high

WLSN Set event when slave’s negative limit switch (LSN) goes low or high

WLSP Set event when slave’s positive limit switch (LSP) goes low or high

WLSO Set event when slave’s load speed is over a value

© ElectroCraft 2013 700 MPD User Manual

WLSU Set event when slave’s load speed is under a value

WMC Set and wait event when the actual motion is completed on one or more slave
axes

WMSO Set and wait event when slave’s motor speed is over a value

WMSU Set and wait event when slave’s motor speed is under a value

WPRO Set and wait event when slave’s position reference is over a value

WPRU Set and wait event when slave’s position reference is under a value

WRPO Set and wait event when slave’s relative load position is over a value

WRPU Set and wait event when slave’s relative load position is under a value

WRT Set event after a wait time

WVDU Set and wait event when the vector distance is under a value

WVDO Set and wait event when the vector distance is over a value

WTR Set and wait event when the slave’s target is reached

© ElectroCraft 2013 701 MPD User Manual

7. Appendix B : MPL Data List

AAR Type: UINT

Address: 0x030C

ACR Type: UINT

Address: 0x0912

AD5 Type: UINT

Address 0x0241

AD5 OFF Type: INT

Address: 0x0249

APOS Type: LONG

Address: 0x0228

APOS_MT Type: LONG

Address: 0x0988

APOS2 Type: LONG

Address: 0x081C

ASPD Type: FIXED

Address: 0x022C

ASPD_LD Type: FIXED

Address: 0x098A

ASPD_MT Type: FIXED

Address: 0x098A

ATIME Type: LONG

Address: 0x02C0

BRAKELIM Type: UINT

Address: 0x028A

CACC Type: FIXED

Address: 0x02A2

CADIN Type: INT

Address 0x025C

CAMINPUT Type: LONG

Address: 0x0901

CAMOFF Type: LONG

Address: 0x03AD

© ElectroCraft 2013 702 MPD User Manual

CAMSTART Type: INT

Address: 0x03AC

CAMX Type: FIXED

Address: 0x0903

CAMY Type: FIXED

Address: 0x0905

CAPPOS Type: LONG

Address: 0x02BC

CAPPOS2 Type: LONG

Address: 0x081E

CDEC Type: FIXED

Address: 0x0859

CLPER Type: INT

Address: 0x0250

CPOS Type: LONG

Address: 0x029E

CSPD Type: FIXED

Address: 0x02A0

DBT Type: UINT

Address: 0x0253

DIGIN_ACTIVE_LEVEL Type: UINT

Address: 0x090C

DIGIN_INVERSION_MASK Type: UINT

Address: 0x090A

DIGOUT_INVERSION_MASK Type: UINT

Address: 0x090B

E_LEVEL_AD5 Type: INT

Address: 0x0870

ELRESL Type: LONG

Address: 0x0875

ENC2THL Type: LONG

Address: 0x024C

EREFP Type: LONG

Address: 0x02A8

EREFS Type: FIXED

Address: 0x02A8

© ElectroCraft 2013 703 MPD User Manual

EREFT Type: INT

Address: 0x02A9

EREFV Type: INT

Address: 0x02A9

ERRMAX Type: INT

Address: 0x02C5

FILTER1 Type: INT

Address: 0x029D

FILTERQ Type: INT

Address: 0x0982

GEAR Type: FIXED

Address: 0x02AC

GEARMASTER Type: INT

Address: 0x0255

GEARSLAVE Type: INT

Address: 0x0256

HALL30 Type: INT

Address: 0x0877

HALLCASE Type: INT

Address: 0x0259

HOMEPOS Type: LONG

Address: 0x0992

HOMESPD Type: FIXED

Address: 0x0994

I2TINTLIM_D Type: ULONG

Address: 0x0980

I2TINTLIM_M Type: ULONG

Address: 0x0815

I2TWARLIM_M Type: ULONG

Address: x097E

ICR Type: UINT

Address: 0x0304

INSTATUS Type: UINT

Address: 0x0908

INTTABLE Type: INT

Address: 0x0307

© ElectroCraft 2013 704 MPD User Manual

IQ Type: INT

Address: 0x0230

IQREF Type: INT

Address: 0x022F

KFFA Type: INT

Address: 0x026E

KII Type: INT

Address: 0x0273

KISPDEST Type: INT

Address: 0x095B

KPI Type: INT

Address: 0x0271

KPSPDEST Type: INT

Address: 0x095C

LEVEL_AD5 Type: INT

Address: 0x086F

LS_ACTIVE Type: INT

Address: 0x0832

MACOMMAND Type: ULONG

Address: 0x02F2

MASTERID Type: INT

Address: 0x0927

MASTERRES Type: LONG

Address: 0x081A

MECRESL Type: LONG

Address: 0x024E

MER Type: UINT

Address: 0x08FC

MER_MASK Type: UINT

Address: 0x0965

MPOS0 Type: LONG

Address: 0x025E

MREF Type: LONG

Address: 0x02AA

MSPD Type: INT

Address: 0x0820

© ElectroCraft 2013 705 MPD User Manual

MTSTYPE Type: INT

Address: 0x028C

NLINES Type: ULONG

Address: 0x0984

NLINESTAN Type: ULONG

Address: 0x0984

OSR Type: UINT

Address: 0x0302

PCR Type: UINT

Address: 0x0303

PHASEADV Type: INT

Address: 0x0257

POS0 Type: LONG

Address: 0x02B8

POSERR Type: INT

Address: 0x022A

POSINIT Type: ULONG

Address: 0x02F2

POSOKLIM Type: UINT

Address: 0x036A

POSTRIGG1 Type: LONG

Address: 0x091A

POSTRIGG2 Type: LONG

Address: 0x091C

POSTRIGG3 Type: LONG

Address: 0x091E

POSTRIGG4 Type: LONG

Address: 0x0920

PVTBUFBEGIN Type: INT

Address: 0x0864

PVTBUFLEN Type: INT

Address: 0x0865

PVTMODE Type: UINT

Address: 0x086B

PVTPOS0 Type: LONG

Address: 0x0869

© ElectroCraft 2013 706 MPD User Manual

PVTSENDOFF Type: INT

Address: 0x092B

PVTSTS Type: INT

Address: 0x0863

PWMPER Type: UINT

Address: 0x0252

REFTST Type: INT

Address: 0x0281

REFTST_A Type: INT

Address: 0x0281

REFTST_V Type: INT

Address: 0x0281

RESRATIOX Type: ULONG

Address: 0x0880

RESRATIOY Type: ULONG

Address: 0x0882

RESRATIOZ Type: ULONG

Address: 0x0884

RINCTST Type: INT

Address: 0x0280

RINCTST_A Type: INT

Address: 0x0280

RINSTST_V Type: INT

Address: 0x0280

RPOS Type: FIXED

Address: 0x02BA

RTIME Type: LONG

Address: 0x02C2

SATPWM Type: INT

Address: 0x0254

SCR Type: UINT

Address: 0x0300

SEGBUFBEGIN Type: ULONG

Address: 0x0864

SEGBUFLEN Type: ULONG

Address: 0x0865

© ElectroCraft 2013 707 MPD User Manual

SEGBUFSTS Type: ULONG

Address: 0x0711

SERRMAX Type: INT

Address: 0x0879

SFI2T_D Type: INT

Address: 0x098C

SFI2T_M Type: INT

Address: 0x0819

SFTADIN Type: INT

Address: 0x025D

SFTKII Type: INT

Address: 0x0274

SFTKPI Type: INT

Address: 0x0272

SLAVEID Type: INT

Address: 0x0311

SLPER Type: INT

Address: 0x0251

SRH Type: UINT

Address: 0x090F

SRHMASK Type: UINT

Address: 0x0963

SRL Type: UINT

Address: 0x090E

SRL_MASK Type: UINT

Address: 0x0962

T1MAXPROT Type: UINT

Address: 0x0298

T1ONA Type: UINT

Address: 0x0284

T1ONB Type: UINT

Address: 0x0285

T2MAXPROT Type: UINT

Address: 0x0299

TACC Type: FIXED

Address: 0x02B6

© ElectroCraft 2013 708 MPD User Manual

TERRMAX Type: UINT

Address 0x02C6

THTST Type: INT

Address: 0x0282

TIMAXPROT Type: UINT

Address: 0x02C4

TIME0 Type: LONG

Address: 0x02BE

TINCTST Type: INT

Address: 0x0283

TJERK Type: LONG

Address: 0x08D1

TMLINPER Type: UINT

Address: 0x0983

TONPOSOK Type: UINT

Address: 0x036B

TPOS Type: LONG

Address: 0x02B2

TREF Type: LONG

Address: 0x02AE

TSERRMAX Type: UINT

Address: 0x087A

TSPD Type: FIXED

Address: 0x02B4

UMSXPORT Type: UINT

Address: 0x029A

IMINPROT Type: UINT

Address: 0x029B

UPGRADE Type: UINT

Address: 0x0857

UQREF Type: INT

Address: 0x0232

